Ganglion cells in the retina have relatively small receptive fields (RF) (~1deg or less). If we assume that these neurons work as spatial filters for local contrast, we should expect that spatial frequencies (SF) stimuli lower than ~0.5cyc/deg would be hardly detected by these neurons because the local contrast within their RF is very small. However, signals with SF lower than 0.5cyc/deg are encoded by the retinal output and made accessible to higher level visual areas with wider RF (the neurons in these areas could therefore detect these kind of stimuli).

How are low spatial frequency signals transmitted then?

The simplest way would be that ganglion cells would respond not only to local contrast but also to local luminance. In this way low SF signals would be encoded in the ganglion cells output as a "place code". In other words every ganglion cell output could represent a "pixel" of the un-filtered luminance pattern projected on the retina preserving the low SF information.

Could you please suggest any sort of material addressing this question?

Thank you!

More Giacomo Benvenuti's questions See All
Similar questions and discussions