Like other meta-heuristic algorithms, some algorithms tend to be trapped in low diversity, local optima and unbalanced exploitation ability.
1- Enhance its exploratory and exploitative performance.
2- Overcome premature convergence (increase the fast convergence) and ease of falling (trapped) into a local optimum.
3- Increase the diversity of population and alleviate the prematurity convergence problem
4- The algorithm suffers from an immature balance between exploitation and exploration.
5- Maintain the diversity of solutions during the search, so that the tendency of stagnation towards the sub-optimal solutions can be avoided and the convergence rate can be boosted to obtain more accurate optimal solutions.
6- Slow convergence speed, inability to jump out of local optima and fixed step length.
7- Improve its population diversity in the search space.