The following publications describe the QT prolongation effect of drugs with the appropriate doses on guinea pigs.
1-J Appl Toxicol. 2004 May-Jun;24(3):217-22.
QT prolongation in anaesthetized guinea-pigs: an experimental approach for preliminary screening of torsadogenicity of drugs and drug candidates.
Testai L1, Calderone V, Salvadori A, Breschi MC, Nieri P, Martinotti E.
Author information
Abstract
Many non-cardiovascular drugs can prolong the QT interval of the electrocardiogram (ECG); this is an accessory property not necessary for their pharmacological action and generally linked to the block of the potassium HERG channels and delayed cardiac repolarization. The QT prolongation can lead to a dangerous tachyarrhythmia, called torsade de pointes, and potentially to fatal ventricular fibrillation. The experimental approaches, aimed at an early identification of this undesidered property, often require sophisticated and expensive equipment or the use of superior animal species (dog, primates) that cannot be employed easily for ethical and/or economic reasons. This work aimed to study drug-induced QT prolongation in anaesthetized guinea-pigs and to evaluate the reliability of such an experimental approach to obtain a satisfying predictive parameter of the torsadogenicity of drugs in humans. Seven drugs that were torsadogenic in humans (astemizole, cisapride, haloperidol, quinidine, sotalol, terfenadine and thioridazine) and two that were non-torsadogenic (chlorprotixene and diazepam) were administered i.v. to guinea-pigs under pentobarbital anaesthesia. The ECGs were recorded by four electrodes inserted in the subcutaneous layer of the limbs. Both RR and QT intervals were measured in Leads II and III and then the correct QT values were calculated by Bazett and Fridericia algorithms (QTcB and QTcF, respectively). All the drugs, with the exception of chlorprotixene and diazepam, produced a dose-dependent prolongation of the QT and RR intervals and a significant increase of QTcB and QTcF values. It can be concluded that this method represents a rapid and low-cost procedure to evaluate the cardiac safety pro fi le in the preliminary screening of a high number of drugs or drug candidates.
http://www.ncbi.nlm.nih.gov/pubmed/15211616
2-J Appl Toxicol. 2007 May-Jun;27(3):270-5.
QT prolongation in guinea pigs for preliminary screening of torsadogenicity of drugs and drug-candidates. II.
Testai L1, Breschi MC, Martinotti E, Calderone V.
Author information
Abstract
Experimental approaches on anaesthetised guinea pigs have been shown recently to be satisfactorily predictive of the torsadogenic risk of drugs. This work aimed at obtaining additional data, for a further understanding of the reliability and/or the limits of this model. Clonidine (non-torsadogenic in humans) induced a lengthening of the ECG parameter of RR in anaesthetised guinea pigs, without any corresponding increase of QT (corrected by the algorithms of Bazett and Fridericia). Thus, 'QT correct' prolonging effects produced by drugs torsadogenic in humans, on the guinea pig model are primarily due to inhibition of cardiac repolarisation. The corresponding RR prolongation is a consequence (not the cause) of this primary effect. Astemizole, haloperidol and terfenadine, torsadogenic in humans, produced in Langendorff perfused guinea pig hearts a prolongation of the QT interval. Chlorprotixene (non-torsadogenic) did not produce any significant effect on QT. These results are fully consistent with previous observations in anaesthetised guinea pigs. In Langendorff perfused hearts, pentobarbital does not affect cardiac repolarisation and does not potentiate the QT-prolonging effect of astemizole. Together with the findings reported by many authors, these data suggest that ECG recording in anaesthetised guinea pigs is a reliable model for cardiac safety studies evaluating the influence of drugs on the repolarisation process.
http://www.ncbi.nlm.nih.gov/pubmed/17265420
3- QT prolongation in anaesthetized guinea-pigs: An experimental approach for preliminary screening of torsadogenicity of drugs and drug candidates
ARTICLE in JOURNAL OF APPLIED TOXICOLOGY 24(3):217-22
Many non-cardiovascular drugs can prolong the QT interval of the electrocardiogram (ECG); this is an accessory property not necessary for their pharmacological action and generally linked to the block of the potassium HERG channels and delayed cardiac repolarization. The QT prolongation can lead to a dangerous tachyarrhythmia, called torsade de pointes, and potentially to fatal ventricular fibrillation. The experimental approaches, aimed at an early identification of this undesidered property, often require sophisticated and expensive equipment or the use of superior animal species (dog, primates) that cannot be employed easily for ethical and/or economic reasons.
This work aimed to study drug-induced QT prolongation in anaesthetized guinea-pigs and to evaluate the reliability of such an experimental approach to obtain a satisfying predictive parameter of the torsadogenicity of drugs in humans. Seven drugs that were torsadogenic in humans (astemizole, cisapride, haloperidol, quinidine, sotalol, terfenadine and thioridazine) and two that were non-torsadogenic (chlorprotixene and diazepam) were administered i.v. to guinea-pigs under pentobarbital anaesthesia. The ECGs were recorded by four electrodes inserted in the subcutaneous layer of the limbs. Both RR and QT intervals were measured in Leads II and III and then the correct QT values were calculated by Bazett and Fridericia algorithms (QTcB and QTcF, respectively). All the drugs, with the exception of chlorprotixene and diazepam, produced a dose-dependent prolongation of the QT and RR intervals and a significant increase of QTcB and QTcF values. It can be concluded that this method represents a rapid and low-cost procedure to evaluate the cardiac safety profile in the preliminary screening of a high number of drugs or drug candidates.
Concern over the potential cardiotoxicity of anti-malarial drugs inducing a prolonged electrocardiographic QT interval has resulted in the almost complete withdrawal from the market of one anti-malarial drug - halofantrine. The effects on the QT interval of four anti-malarial drugs were examined, using the guinea pig heart.
Methods
The guinea pig heart was isolated, mounted on a Langendorff apparatus, and was then perfused with pyruvate-added Klebs-Henseleit solutions containing graded concentrations of the four agents such as quinidine (0.15 - 1.2 μM), quinine (0.3 - 2.4 μM), halofantrine (0.1 - 2.0 μM) and mefloquine (0.1 - 2.0 μM). The heart rate-corrected QaTc intervals were measured to evaluate drug-induced QT prolongation effects.
Results
Quinidine, quinine, and halofantrine prolonged the QaTc interval in a dose-dependent manner, whereas no such effect was found with mefloquine. The EC50 values for the QaTc prolongation effects, the concentration that gives a half-maximum effect, were quinidine < quinine ≈ halofantrine.
Conclusions
In this study, an isolated, perfused guinea pig heart system was constructed to assess the cardiotoxic potential of anti-malarial drugs. This isolated perfused guinea pig heart system could be used to test newly developed anti-malarial drugs for their inherent QT lengthening potential. More information is required on the potential variation in unbound drug concentrations in humans, and their role in cardiotoxicity.
Published online 2008 Jun 30. doi: 10.1038/bjp.2008.267
PMCID: PMC2442905
Predicting QT prolongation in humans during early drug development using hERG inhibition and an anaesthetized guinea-pig model
X Yao,1,* D L Anderson,1 S A Ross,1 D G Lang,1 B Z Desai,1 D C Cooper,2 P Wheelan,3 M S McIntyre,1 M L Bergquist,2 K I MacKenzie,1,4 J D Becherer,1 and M A Hashim1
Author information ► Article notes ► Copyright and License information ►
This article has been cited by other articles in PMC.
Go to:
Abstract
Background and purpose:
Drug-induced prolongation of the QT interval can lead to torsade de pointes, a life-threatening ventricular arrhythmia. Finding appropriate assays from among the plethora of options available to predict reliably this serious adverse effect in humans remains a challenging issue for the discovery and development of drugs. The purpose of the present study was to develop and verify a reliable and relatively simple approach for assessing, during preclinical development, the propensity of drugs to prolong the QT interval in humans.
Experimental approach:
Sixteen marketed drugs from various pharmacological classes with a known incidence—or lack thereof—of QT prolongation in humans were examined in hERG (human ether a-go-go-related gene) patch-clamp assay and an anaesthetized guinea-pig assay for QT prolongation using specific protocols. Drug concentrations in perfusates from hERG assays and plasma samples from guinea-pigs were determined using liquid chromatography-mass spectrometry.
Key results:
Various pharmacological agents that inhibit hERG currents prolong the QT interval in anaesthetized guinea-pigs in a manner similar to that seen in humans and at comparable drug exposures. Several compounds not associated with QT prolongation in humans failed to prolong the QT interval in this model.
Conclusions and implications:
Analysis of hERG inhibitory potency in conjunction with drug exposures and QT interval measurements in anaesthetized guinea-pigs can reliably predict, during preclinical drug development, the risk of human QT prolongation. A strategy is proposed for mitigating the risk of QT prolongation of new chemical entities during early lead optimization.
Hi, The following publication is very useful. For this assay is you have to use i.v. formulation of your drug, hence solubility could be a limiting factor. The selection of the dose will also depend on the PK parameters of your compound in guinea pigs.