Note. The sequence of polynomials should be the same for all the continuity points; yet the convergence does not have to be uniform of the continuity set.

Comment. Looks and sounds like "déjà vu", a consequence of some known result. So far, I've got this: The continuity set is G_δ (i.e., a countable intersection of open sets) hence, by a theorem of Mazurkiewicz, it can be endowed as a complete metric space. Also, by the Heine-Borel theorem, a metric space is complete and totally bounded if and only if it is compact. So one may wonder if the above result is just a consequence of the following extension(s) of Weierstrass’ approximation theorem: to compact metric spaces (due to Stone) or to totally bounded metric spaces (due to Bishop). In other words, this issue amounts to the question: is a G_δ set totally bounded? And the answer is in the negative because, in general, not every bounded metric space is totally bounded.

More George Stoica's questions See All
Similar questions and discussions