06 June 2015 7 565 Report

I'm trying to use SVM-RFE with libsvm library to run on the gene expression dataset. My algorithm is written in Matlab. The particular dataset able to produce 80++% of classification accuracy under the 5-fold CV without applied Feature selection. When I tried to apply svm-rfe on this dataset (same svm parameter setting and use 5-fold CV), the classification result become worse, can only achieve 60++% classification accuracy.

Here is my matlab coding, appreciate if anyone can shed some light on whats wrong with my codes. Thank you in advance.

[label, data] = libsvmread('libsvm_data.scale');

[N D] = size(data);

numfold=5;

indices = crossvalind ('Kfold',label, numfold);

cp = classperf(label);

for i= 1:numfold

disp(strcat('Fold-',int2str(i)));

testix = (indices == i); trainix = ~testix;

test_data = data(testix,:); test_label = label(testix);

train_data = data(trainix,:); train_label = label(trainix);

model = svmtrain(train_label, train_data, sprintf('-s 0 -t 0);

s = 1:D;

r = [];

iter = 1;

while ~isempty(s)

X = train_data(:,s);

fs_model = svmtrain(train_label, X, sprintf('-s 0 -t %f -c %f -g %f -b 1', kernel, cost, gamma));

w = fs_model.SVs' * fs_model.sv_coef;

c = w.^2;

[c_minvalue, f] = min(c);

r = [s(f),r];

ind = [1:f-1, f+1:length(s)];

s = s(ind);

iter = iter + 1;

end

predefined = 100;

important_feat = r(:,D-predefined+1:end);

for l=1:length(important_feat)

testdata(:,l) = test_data (:,important_feat(l));

end

[predict_label_itest, accuracy_itest, prob_values] = svmpredict(test_label, testdata, model,'-b 1');

acc_itest_fs (:,i) = accuracy_itest(1);

clear testdata;

end

Mean_itest_fs = mean((acc_itest_fs),2);

Mean_bac_fs = mean (bac_fs,2);

More JC Ang's questions See All
Similar questions and discussions