Classification of thermodynamic phase transitions relies on the analiticity of the Helmholtz free energy (or the corresponding thermodynamic potential, depending on the ensemble). As it is widely known, first-order phase transitions are characterized by a discontinuity in the first derivative of the thermodynamic potential with respect to the relevant intensive variable, while in continuous phase transitions the thermodynamic potentials are continuous and differentiable, but high-order derivatives may be undefined.
Imagine now that one considers a system udergoing a phase transition for given values of temperature, pressure, etc. Is it possible to infer that such a system will exhibit a thermodynamic phase transition by looking at the microcanonical density of states (DOS), instead of the thermodynamic potentials? Does the DOS carry some signature of the phase transitions? If yes, what traits indicate the order of the transition ?
By studying some classical papers (like those on random energy models and trap models by Derrida), one can infer, for instance, that a DOS with edge states can be linked to a thermodynamic freezing (glass) transition. Are there similar signs in the simpler cases of first and second order phase transitions? I intuitively believe there must be, since, for instance, the canonical partition function is simply the Laplace transform of the microcanonical DOS. But I don't know what those signs may be.