I am working on a study of the spatial distribution of leprosy in an armadillo population. We have point locations for each captured individual and a binary measurement of whether each individual did or did not test positive for leprosy. This sort of marked point pattern is a form of univariate labeled data and I want to do a network (cross) Ripley's K analysis with a conditional randomization test, where the point locations are held constant and the mark (leprosy: yes or no) is permuted among the locations (rather than permuting the locations themselves). I have tried both SANET and GeoDaNet, which do a network version of a cross K analysis, but the randomization scheme seems to be for true bivariate data (not univariate labeled data).
Does anyone know of software that can do a "conditional randomization" test for network (cross) Ripley's K? Our software (PASSaGE 2) can do 1D, 2D, or 3D Ripley's K with this sort of permutation scheme, but not network K.