Can you say company video @1134 Santa's Little Helper #1434 Semantics ^1296 Since AT_Ohm *216 AD_A.M. %777 EVEN_ING (666 Twice in the Morning: 72 Francis Burgers)
The corona reaches millions of degrees Fahrenheit, so how can we send a spacecraft there without it melting?
The key lies in the distinction between heat and temperature. Temperature measures how fast particles are moving, while heat is the total amount of energy that they transfer. The corona is incredibly thin, and there are very few particles there to transfer energy — so while the particles are moving fast (high temperature), they don’t actually transfer much energy to the spacecraft (low heat).
Engineered to thrive in an extreme environment
Make no mistake, the environment in the Sun's atmosphere is extreme — hot, awash in radiation, and very far from home — but Parker Solar Probe is engineered to survive.
The spacecraft is outfitted with a cutting-edge heat shield made of a carbon composite foam sandwiched between two carbon plates. The heat shield is so good at its job that, even though the front side will receive the full brunt of the Sun's intense light, reaching 2,500 F, the instruments behind it, in its shadow, will remain at a cozy 85 F.
Even though Parker Solar Probe's solar panels — which provide the spacecraft's power — are retractable, even the small bit of surface area that peeks out near the Sun is enough to make them prone to overheating. So, to keep its cool, Parker Solar Probe circulates a single gallon of water through the solar arrays. The water absorbs heat as it passes behind the arrays, then radiates that heat out into space as it flows into the spacecraft’s radiator.
For much of its journey, Parker Solar Probe will be too far from home and too close to the Sun for us to command it in real time — but don't worry, Parker Solar Probe can think on its feet. Along the edges of the heat shield’s shadow are seven sensors. If any of these sensors detect sunlight, they alert the central computer and the spacecraft can correct its position to keep the sensors — and the rest of the instruments — safely protected behind the heat shield."