Hello, Are there alternative ways of approaching the problem of controlling for alpha inflation which consider instances with very small and hard to reach samples with which multiple hypothesis (which are all testing the same dependant variables)?

In my case, the Bonferroni correction is too restrictive: 1) Since the alpha is so small, it will make it hard to yield significant results and 2) It requires that I recruit too many participants for the number that is available in order to have sufficient statistical power. Indeed, my population is hard to reach because it is a very specific clinical population.

On the study: We want to identify which return-to-work obstacle predict return-to-work in organ transplant recipients. Return-to-work obstacles are measured using a single instrument, which has 10 independant subscales. Thus, 10 tests will be performed. For each test, there will be 2 independant variables : 1) How much a return-to-work obstacle (subscale) is perceived as importante (score : 1-7) and 2) How much self-efficacy one has regarding this obstacle/subscale (score: 1-7). The dependent variables are: 1) The intention do return to work (yes/no), 2) Employer's intention of welcoming the employee back (yes/no). The dependent variables are measured 6 months after the dependent variable.

Thanks so much in advance for your help! I am very thankful for this wonderful community.

More Keira Gaudet's questions See All
Similar questions and discussions