I have a model that consist of two ODEs and one PDE which are all coupled and non-linear. When I linearize the system around the steady state and simulate the system with initial values that are different from steady state I get a stationary deviation in one of the solutions. Due to non-linearities I expect a quite different behavior for the linear system. However, if I multiply some the elements of the system matrix with a constant (relaxation or dampning coefficient?), the linear system now resembles the non-linear system much better in terms of transient behavior and that I no longer have a stationary deviation which I had before. Is this method for fitting the linear model allowed and have some theory that can justify the use of such relaxation constants? Or is it just a 'cheat' which is not valid as the system does change due to the use of such constant?