Deterministic Global optimization relies on convex relaxation of the non-convex problems. Certain nonlinearities are duly converted into linear forms underestimators to be solved by efficient MILP solvers (e.g. signomial functions/ bilinear terms).
Most nonlinearityies are approximated to linear functions by piece-wise linearizations. However, I am wondering if this linearizations guarantees that the approximations are understimators of the original nonconvex problem (i.e. for all x in Domf, f(x) >= u(x) where u is the understimator)
because otherwise the understimator may miss the global optimum during the branch and bound process.
Can the solver still converge even if the relaxation is not an understimator?