Positron emission tomography generally shows imaging of the physiology of the tumor as well as its anatomy, which is superior. It is unique compared to other cross-sectional imaging such as computed tomography or computed tomography (CT) or computed tomography. CT scans or MRIs often can not detect changes at the cellular level if the PET scan is capable of immediate changes. Identify in patient cells.

In order to image the tumor using PET or other methods, differences in basic features established in physiological and Metabolic of tumors and normal tissues. These differences include tumor surface antigens compared to cell tissues. Generally grow and DNA precursors such as thymidine and the rate of protein synthesis in tumors often increase compared to normal tissues. transport and Mixing of various amino acids, as well as anaerobic and aerobic glucose levels, are observed in tumor cells. In a wide range of Tumor types Glucose intake increases significantly compared to healthy tissues. In a typical PET system they are separated by a lead or tungsten blade detection of random photons in one shot Match with photons detected in other shots. In the diagram below, I plotted the average positron emitted energy from several desired radionuclides. Which of these radionuclides is best for our purposes?

More Mahyar Radak's questions See All
Similar questions and discussions