I have read a fair few papers about this: defect models, papers that deal with demonstration of Fermi level depinning in Ge using certain top metal or MIS combinations. There is no doubt that the pinning position is near the valence band (VB) as I have confirmed this by experimentally measuring Schottky barriers for various metal/ Ge combinations (on both n and p type Ge).
Fermi level pinning is usually attributed to a distribution of donor and acceptor states near the VB forming a charge neutral level (~0.1 eV above the VB).
Unlike GaAs, I could not find any intuitive explanation for the physical origin of these defects (antisite defects seem to be the main candidates that behave like donor and acceptor states in III-V's). Moreover, segregation of group V atoms at atomic terraces are known to create dipoles that could affect the surface workfunction and local charge. Together, these phenomenon may somehow account for fermi level pinning. However, in Ge, there's only one species (Ge atoms) so I'm finding it hard to understand how both types of defects may arise. Are point defects (interstitials and vacancies) alone sufficient to create this effect? Could you provide any references that may be helpful? Thanks.