X-Ray photoelectron spectroscopy, XPS was used to investigate the chemistry at the surface of the samples. The basic mechanism behind an XPS instrument is that the photons of a specific energy are used to excite the electronic states of atoms at and just below the surface of the sample.
There are several areas suited to measurement by XPS:
1. Elemental composition
2. Empirical formula determination
3. Chemical state
4. Electronic state
5. Binding energy
6. Layer thickness in the upper portion of surfaces
XPS has many advantages, such as it is is good for identifying all but two elements, identifying the chemical state on surfaces, and is good with quantitative analysis. XPS is capable of detecting the difference in chemical state between samples. XPS is also able to differentiate between oxidations states of molecules.
XPS has also some limitations, for instance, samples for XPS must be compatible with the ultra high vacuum environment. XPS is limited to measurements of elements having atomic numbers of 3 or greater, making it unable to detect hydrogen or helium. XPS spectra also take a long time to obtain. The use of a monochromator can also reduce the time per experiment.