Stokes’ theorem says we can calculate the flux of curl F across surface S by knowing information only about the values of F along the boundary of S. Conversely, we can calculate the line integral of vector field F along the boundary of surface S by translating to a double integral of the curl of F over S.

Let S be an oriented smooth surface with unit normal vector N. Furthermore, suppose the boundary of S is a simple closed curve C. The orientation of S induces the positive orientation of C if, as you walk in the positive direction around C with your head pointing in the direction of N, the surface is always on your left. With this definition in place, we can state Stokes’ theorem.

source: 6.7 Stokes’ Theorem - Calculus Volume 3 | OpenStax

More Eduard Babulak's questions See All
Similar questions and discussions