The invention stops the bending of the bearing vertical concrete elements by imposing compressive stresses on the cross sections. as well as the tipping moment, through the anchoring mechanism which anchors strongly under the foundation ground. It also creates an improvement in the bearing capacity of the soil in both compression and traction. Prefabricated structures made of reinforced concrete are the ideal constructions in which the invention has high efficiency and utility for the following reasons. 1) Prefabricated reinforced concrete structures are rigid and the imposition of compressive stresses on the cross section makes them even more rigid and improves the shear of the base. 2) The mathematical formula to find the moment of inversion is (force X height and the product is divided by the width of the wall) If we have a prefabricated two-storey reinforced concrete structure 7 meters high and with a frame width of 4x4 meters, which accepts a lateral force of 80 tons, the tipping moment will be (7X80 / 4 =) 140 tons If we place 2 tendons on each side of the prefabricated house, then each one must create a moment of stability> 70 tons. If the same construction was based on 4 columns of dimensions 0.40X0.40X 7.00 meters then the moment of stability of the tendons would be much greater. (7Χ80 =) 560 tons 560/2 = 280 tons. So there is a big difference in dynamics, between the choice of columns and walls, and the stress of the tendons to the tensile stresses, and the anchors to the ground adhesion and the cross sections to the compression. So the choice of prefabricated is better. 3) Prefabricated houses are also industrialized and cost half the money that another construction costs. These three main reasons are where they make the patent on prefabricated houses profitable. Both cheap and anti-seismic.

More Ioannis Lymperis's questions See All
Similar questions and discussions