I have two categorical explanatory variable and one binary response variable. I am using 'R' for the analyses. I have provide my model below.
Call:
glm(formula = Amplification ~ Days * Storage, family = "binomial",
data = data1)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.53727 0.00008 0.28573 0.65009 0.94476
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.4423 0.7372 3.313 0.000923 ***
DaysThirty 17.1237 2150.8027 0.008 0.993648
DaysTwenty 17.1237 2150.8027 0.008 0.993648
StorageE75 -1.8670 0.8468 -2.205 0.027474 *
StorageE99 -1.2897 0.8734 -1.477 0.139768
StorageRL -1.8670 0.8468 -2.205 0.027474 *
DaysThirty:StorageE75 -15.7067 2150.8028 -0.007 0.994173
DaysTwenty:StorageE75 1.8670 3041.6943 0.001 0.999510
DaysThirty:StorageE99 1.2897 3041.6943 0.000 0.999662
DaysTwenty:StorageE99 -15.0983 2150.8030 -0.007 0.994399
DaysThirty:StorageRL -16.2522 2150.8028 -0.008 0.993971
DaysTwenty:StorageRL -16.7546 2150.8028 -0.008 0.993785
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 238.14 on 295 degrees of freedom
Residual deviance: 183.68 on 284 degrees of freedom
AIC: 207.68
Number of Fisher Scoring iterations: 18
anova(model1, test="Chisq")
Analysis of Deviance Table
Model: binomial, link: logit
Response: Amplification
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 295 238.13
Days 2 17.635 293 220.50 0.0001481 ***
Storage 3 23.680 290 196.82 2.913e-05 ***
Days:Storage 6 13.145 284 183.68 0.0407983 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1