Let's just say we're looking at the classical continuous canonical ensemble of a harmonic oscillator, where:
H = p^2 / 2m + 1/2 * m * omega^2 * x^2
and the partition function (omitting the integrals over phase space here) is defined as
Z = Exp[-H / (kb * T)]
and the average energy can be calculated as proportional to the derivative of ln[Z].
Equipartion theorem says that each independent coordinate must contribute R/2 to the systems energy, so in a 3D system, we should get 3R. My question is does equipartion break down if the frequency is temperature dependent?
Let's say omega = omega[T], then when you take the derivative of Z to calculate the average energy. If omega'[T] is not zero, then it will either add or detract from the average kinetic energy and therefore will disagree with equipartition. Is this correct?