I would like to ask about any method for testing spatial dependence on categorical data (e.g. vegetation types polygons) and tools for modeling it against environmental data.
Naimi, B., Skidmore, A. K., Groen, T. A., & Hamm, N. A. S. (2011). Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling. Journal of Biogeography, 38(8), 1497–1509. http://doi.org/10.1111/j.1365-2699.2011.02523.x
Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling? Ecography, 37(2), 191–203. http://doi.org/10.1111/j.1600-0587.2013.00205.x
If so, you can start work using the "usdm" R Package: Uncertainty Analysis for Species Distribution Models by Babak Naimi.
You can perform spatial analysis on categorical data by using join count statistics.
A quick overview of the method can be found here: http://www.gitta.info/DiscrSpatVari/en/html/spat_depend_join_ct_stat.html
A more detailed description can be found herer: http://www.statsref.com/HTML/index.html?two_dimensional_spatial_autoco.html
Mathematical Functions of the Method: http://www.people.fas.harvard.edu/~zhukov/Spatial2.pdf
And here you can find a good discussion regarding modelling tools: http://gis.stackexchange.com/questions/49430/what-is-an-appropriate-statistic-to-measure-spatial-autocorrelation-of-points-wi