MATHEMATICS VS. CAUSALITY:
A SYSTEMIC RECONCILIATION
Raphael Neelamkavil, Ph.D., Dr. phil.
1. Preface on the Use of Complex Language
2. Prelude on the Pre-Scientific Principle of Causality
3. Mathematical “Continuity and Discreteness” Vs. Causal Continuity
4. Mathematics and Logic within Causal Metaphysics
5. Mathematics, Causality, and Contemporary Philosophical Schools
1. Preface on the Use of Complex Language
First of all, a cautious justification is in place about the complexity one may experience in the formulations below: When I publish anything, the readers have the right to ask me constantly for further justifications of my arguments and claims. And if I have the right to anticipate some such possible questions and arguments, I will naturally attempt to be as detailed and systemic as possible in my formulation of each sentence here and now. A sentence is merely a part of the formulated text. After reading each sentence, you may pose me questions, which certainly cannot all be answered well within the sentences or soon after the sentences in question, because justification is a long process.
Hence, my sentences may tend to be systemically complex. A serious reader will not find these arguments getting too complex, because such a person has further unanswered questions. We do not purposely make anything complex. Our characterizations of meanings in mathematics, physics, philosophy, and logic can be complex and prohibitive for some. But would we all accuse these disciplines or the readers if the readers find them all complex and difficult? In that case, I could be excused too. I do not intentionally create a complex state of affairs in these few pages; but there are complexities here too. I express my helplessness in case any one finds these statements complex.
The languages of both science and philosophy tend to be complex and exact. This, nevertheless, should be tolerated provided the purpose is understood and practiced by both the authors and the readers. Ordinary language has its worth and power. If I give a lecture, I do not always use such formal a language as when I write, because I am there to re-clarify.
But the Wittgensteinian obsession with “ordinary” language does not make him use an ordinary language in his own works. Nor does the Fregean phobia about it save him from falling into the same ordinary-language naïveté of choosing concrete and denotative equivalence between terms and their reference-objects without a complex ontology behind them. I attempt to explain the complex ontology behind the notions that I use.
2. Prelude on the Pre-Scientific Principle of Causality
Which are the ultimate conditions implied by the notion of existence (To Be), without which conditions implied nothing exists, and without which sort of existents nothing can be discoursed? Anything exists non-vacuously. This implies that existents are inevitably in Extension (having parts, each of which is further extended and not vacuous). The parts will naturally have some contact with a finite number of others. That is, everything is in Change (impacting some other extended existents).
Anything without these two characteristics cannot exist. If not in Change, how can something exist in the state of Extension alone? And if not in Extension, how can something exist in the state of Change alone? Hence, Extension-Change are two fundamental ontological categories of all existence and the only two exhaustive implications of To Be. Any unit of causation with one causal aspect and one effect aspect is termed a process.
These conditions are ultimate in the sense that they are implied by To Be, not as the secondary conditions for anything to fulfil after its existence. Thus, “To Be” is not merely of one specific existent, but of all existents. Hence, Extension-Change are the implications of the To Be of Reality-in-total. Physical entities obey these implications. Hence, they must be the foundations of physics and all other sciences. Theoretical foundations, procedures, and conclusions based on these implications in the sciences and philosophy, I hold, are wise enough.
Extension-Change-wise existence is what we understand as Causality: extended existents and their parts exert impacts on other extended existents. Every part of existents does it. That is, if anything exists, it is in Causation. This is the principle of Universal Causality. In short, Causality is not a matter to be decided in science – whether there is Causality or not in any process under experiment and in all existents is a matter for philosophy to decide, because philosophy tends to study all existents. Science can ask only whether there occurs any specific sort of causation or not, because each science has its own restricted viewpoint of questions and experiments and in some cases also restrictions in the object set.
Thus, statistically mathematical causality is not a decision as to whether there is causation or not in the object set. It is not a different sort of causation, but a measure of the extent of determination of special causes that we have made at a given time. Even the allegedly “non-causal” quantum-mechanical constituent processes are mathematically and statistically circumscribed measuremental concepts from the results of Extended-Changing existents and, ipso facto, the realities behind these statistical measurements are in Extension-Change if they are physically existent.
Space is the measured shape of Extension; time is that of Change. Therefore, space and time are epistemic categories. How then can statistical causality based only on measuremental data be causality at all, if the causes are all in Extension-Change and if Universal Causality is already the pre-scientific Law under which all other laws appear? No part of an existent is non-extended and non-changing. One unit of cause and effect may be called a process. Every existent and its parts are processual.
And how can a so-called random cause be a cause, except when the randomness is the extent of our measuremental reach of the cause, which already is causal because of its Extension-Change-wise existence? Extension and Change are the very exhaustive meanings of To Be, and hence I call them the highest Categories of metaphysics, physical ontology, physics, and all science. Not merely philosophy but also science must obey these two Categories.
In short, everything existent is causal. Hence, Universal Causality is the highest pre-scientific Law, second conceptually only to Extension-Change and third to Existence / To Be. Natural laws are merely derivative. Since Extension-Change-wise existence is the same as Universal Causality, scientific laws are derived from Universal Causality, and not vice versa. Today the sciences attempt to derive causality from the various scientific laws!The relevance of metaphysics / physical ontology for the sciences is clear from the above.
Existents have some Activity and Stability. This is a fully physical fact. These two Categories may be shown to be subservient to Extension-Change and Causality. Pure vacuum (non-existence) is absence of Activity and Stability. Thus, entities, irreducibly, are active-stable processes in Extension-Change. Physical entities / processes possess finite Activity and Stability. Activity and Stability together belong to Extension; and Activity and Stability together belong to Change too.
That is, Stability is neither merely about space nor about Extension. Activity is neither merely about time nor about Change. There is a unique reason for this. There is no absolute stability nor absolute activity in the physical world. Hence, Activity is finite, which is by Extended-Changing processes; and Stability is finite, which is also by Extended-Changing processes. But the tradition still seems to parallelise Stability and Activity with space and time respectively. We consider Activity and Stability as sub-Categories, because they are based on Extension-Change, which together add up to Universal Causality; and each unit of cause and effect is a process.
These are not Categories that belong to merely imaginary counterfactual situations. The Categories of Extension-Change and their sub-formulations are all about existents. There can be counterfactuals that signify cases that appertain existent processes. But separating these cases from some of the useless logical talk as in linguistic-analytically tending logic, philosophy, and philosophy of science is near to impossible.
Today physics and the various sciences do at times something like the said absence of separation of counterfactual cases from actual in that they indulge in particularistically defined terms and procedures, by blindly thinking that counterfactuals can directly represent the physical processes under inquiry. Concerning mathematical applications too, the majority attitude among scientists is that they are somehow free from the physical world.
Hence, without a very general physical ontology of Categories that are applicable to all existent processes and without deriving the mathematical foundations from these Categories, the sciences and mathematics are in gross handicap. Mathematics is no exception in its applicability to physical sciences. Moreover, pure mathematics too needs the hand of Extension and Change, since these are part of the ontological universals, form their reflections in mind and language, etc., thus giving rise to mathematics.
The exactness within complexity that could be expected of any discourse based on the Categorial implications of To Be can only be such that (1) the denotative terms ‘Extension’ and ‘Change’ may or may not remain the same, (2) but the two dimensions of Extension and Change – that are their aspects in ontological universals – would be safeguarded both physical-ontologically and scientifically.
That is, definitional flexibility and openness towards re-deepening, re-generalizing, re-sharpening, etc. may even change the very denotative terms, but the essential Categorial features within the definitions (1) will differ only meagrely, and (2) will normally be completely the same.
3. Mathematical “Continuity and Discreteness” Vs. Causal “Continuity”
The best examples for the above are mathematical continuity and discreteness that are being attributed blindly to physical processes due to the physical absolutization of mathematical requirements. But physical processes are continuous and discrete only in their Causality. This is nothing but Extension-Change-wise discrete causal continuity. At any time, causation is present in anything, hence there is causal continuity. This is finite causation and hence effects finite continuity and finite discreteness. But this is different from absolute mathematical continuity and discreteness.
I believe that it is common knowledge that mathematics and its applications cannot prove Causality directly. What are the bases of the problem of incompatibility of physical causality within mathematics and its applications in the sciences and in philosophy? The main but general explanation could be that mathematical explanations are not directly about the world but are applicable to the world to a great extent.
It is good to note that mathematics is a separate science as if its “objects” were existent, but in fact as non-existent and different from those of any other science – thus creating mathematics into an abstract science in its theoretical aspects of rational effectiveness. Hence, mathematical explanations can at the most only show the ways of movement of the processes and not demonstrate whether the ways of the cosmos are by causation.
Moreover, the basic notions of mathematics (number, number systems, points, shapes, operations, structures, etc.) are all universals / universal qualities / ontological universals that belong to groups of existent things that are irreducibly Extension-Change-type processes. (See below.)
Thus, mathematical notions have their origin in ontological universals and their reflections in mind (connotative universals) and in language (denotative universals). The basic nature of these universals is ‘quantitatively qualitative’. We shall not discuss this aspect here at length.
No science and philosophy can start without admitting that the cosmos exists. If it exists, it is not nothing, not non-entity, not vacuum. Non-vacuous existence means that the existents are non-vacuously extended. This means they have parts. Every part has parts too, ad libitum, because each part is extended. None of the parts is an infinitesimal. They can be near-infinitesimal. This character of existents is Extension, a Category directly implied by To Be.
Similarly, any extended being’s parts are active, moving. This implies that every part has impact on some others, not on infinite others. This character of existents is Change. No other implication of To Be is so primary as these. Hence, they are exhaustive of the concept of To Be, which belongs to Reality-in-total. These arguments show us the way to conceive the meaning of causal continuity.
Existence in Extension-Change is what we call Causality. If anything is existent, it is causal – hence Universal Causality is the trans-science physical-ontological Law of all existents. By the very concept of finite Extension-Change-wise existence, it becomes clear that no finite space-time is absolutely dense with existents. In fact, space-time is no ontological affair, but only epistemological, and existent processes need measurementally accessible finite space for Change. Hence, existents cannot be mathematically continuous. Since there is Change and transfer of impact, no existent can be absolutely discrete in its parts or in connection with others.
Can logic show the necessity of all existents to be causal? We have already discussed how, ontologically, the very concept of To Be implies Extension-Change and thus also Universal Causality. Logic can only be instrumental in this.
What about the ability or not of logic to conclude to Universal Causality? In my arguments above and elsewhere showing Extension-Change as the very exhaustive meaning of To Be, I have used mostly only the first principles of ordinary logic, namely, Identity, Contradiction, and Excluded Middle, and then argued that Extension-Change-wise existence is nothing but Universal Causality if everything existing is non-vacuous in existence.
For example, does everything exist or not? If yes, let us call it non-vacuous existence. Hence, Extension is the first major implication of To Be. Non-vacuous means extended, because if not extended the existent is vacuous. If extended, everything has parts. Having parts implies distances, however minute, between all the near-infinitesimal parts of any existent process. In this sense, the basic logical laws do help conclude the causal nature of existents.
A point of addition now has been Change. It is, so to say, from experience. But this need not exactly mean an addition. If existents have parts (i.e., if they are in Extension), the parts’ mutual difference already implies the possibility of contact between parts. Thus, I am empowered to move to the meaning of Change basically as motion or impact. Naturally, everything in Extension must effect impacts.
Everything has further parts. Hence, by implication from Change and the need for there to be contacts between every near-infinitesimal set of parts of existents, everything causes changes by impacts. In the physical world this is by finite impact formation. Hence, nothing can exist as an infinitesimal. Leibniz’s monads have no significance in the real world.
Thus, we conclude that Extension-Change-wise existence is Universal Causality, and every actor in causation is a real existent, not a non-extended existent, as energy particles seem to have been considered and are even today thought to be, due to their unit-shape yielded merely for the sake mathematical applications. It is thus natural to claim that Causality is a pre-scientific Law of Existence, where existents are all inwardly and outwardly in Change, i.e., in impact formation – otherwise, the concept of Change would lose meaning.
In such foundational questions like To Be and its implications, the first principles of logic must be used, because these are the foundational notions of all science and no other derivative logical procedure comes in as handy. In short, logic with its fundamental principles can help derive Universal Causality. Thus, Causality (Extension-Change) is more primary to experience than the primitive notions of mathematics. But the applicability of these three logical Laws is not guaranteed so well in arguments using derivative, less categorial, sorts of concepts.
I suggest that the crux of the problem of mathematics and causality is the dichotomy between mathematical continuity and mathematical discreteness on the one hand and the incompatibility of applying any of them directly on the data collected / collectible / interpretable from some layers of the phenomena which are from some layers of the object-process in question. Not recognizing the presence of such stratificational debilitation of epistemic directness is an epistemological foolishness. Science and philosophy, in my opinion, are victims of this. Thus, for example, the Bayesian statistical theory recognizes only a statistical membrane between reality and data!
Here I point at the avoidance of the problem of stratificational debilitation of epistemic directness, by the centuries of epistemological foolishness, by reason of the forgetfulness of the ontological and epistemological relevance of expressions like ‘from some layers of data from some layers of phenomena from some layers of the reality’.
This is the point at which it is time to recognize the gross violence against natural reason behind phrases and statements involving ‘data from observation’, ‘data from phenomena’, ‘data from nature / reality’ etc., without epistemological and ontological sharpness in both science and philosophy to accept these basic facts of nature. As we all know, this state of affairs has gone irredeemable in the sciences today.
The whole of what we used to call space is not filled with matter-energy. Hence, if causal continuity between partially discrete “processual” objects is the case, then the data collected / collectible cannot be the very processual objects and hence cannot provide all knowledge about the processual objects. But mathematics and all other research methodologies are based on human experience and thought based on experience.
This theoretical attitude facilitates and accepts in a highly generalized manner the following three points:
(1) Mathematical continuity (in any theory and in terms of any amount of axiomatization of logical, mathematical, physical, biological, social, and linguistic theories) is totally non-realizable in nature as a whole and in its parts: because (a) the necessity of mathematical approval of any sort of causality in the sciences and by means of its systemic physical ontology falls short miserably in actuality, and (b) the logical continuity of any kind does not automatically make linguistically or mathematically symbolized activity of representation adequate enough to represent the processual nature of entities as derivate from data.
(2) The concept of absolute discreteness in nature, which, as of today, is ultimately of the quantum-mechanical type based on Planck’s constant, continues to be a mathematical and partial misfit in the physical cosmos and its parts, (a) if there exist other universes that may causally determine the constant differently at their specific expansion and/or contraction phases, and (b) if there are an infinite number of such finite-content universes.
The case may not of course be so problematic in non-quantifiable “possible worlds” due to their absolute causal disconnection or their predominant tendency to causal disconnection, but this is a mere common-sense, merely mathematical, compartmentalization: because (a) the aspect of the causally processual connection between any two quanta is logically and mathematically alienated in the physical theory of Planck’s constant, and (b) the possible worlds have only a non-causal existence, and hence, anything may be determined in this world as a constant, and an infinite number of possible universes may be posited without any causal objection!
It is usually not kept in mind here by physicists that the epistemology of unit-based thinking – of course, based on quantum physics or not – is implied by the almost unconscious tendency of symbolic activity of body-minds. This need not have anything to do with a physics that produces laws for all existent universes.
(3) The only viable and thus the most reasonably generalizable manner of being of the physical cosmos and of biological entities is that of existence in an Extended (having parts) and Changing manner (extended entities and their parts impacting a finite number of other existents and their parts in a finite quantity and in a finite duration). Existence in the Extension-Change-wise manner is nothing but causal activity.
Thus, insofar as everything is existent, every existent is causal. There is no time (i.e., no minute measuremental iota of Change) wherein such causal manner of existing ceases in any existent. This is causal continuity between partially discrete processual objects. This is not mathematizable in a discrete manner. The concept of geometrical and number-theoretic continuity may apply. But if there are other universes, the Planck constant of proportionality that determines the proportion of content of discreteness may change in the others. This is not previsioned in terrestrially planned physics.
The attitude of treating everything as causal may also be characterized by the self-aware symbolic activity by symbolic activity itself, in which certain instances of causation are avoided or enhanced, all decrementally or incrementally as the case may be, but not absolutely. This, at the most, is what may be called freedom.
It is fully causal – need not be sensed as causal within a specific set of parameters, but as causal within the context of Reality-in-total. But the whole three millennia of psychological and religious (contemplative) tradition of basing freedom merely on awareness intensity, and not on love – this is a despicable state of affairs, on which a book-length treatise is necessary.
Physics and cosmology even today tend to make the cosmos either (1) mathematically presupposedly continuous, or (2) discrete with defectively ideal mathematical status for causal continuity and with perfectly geometrical ideal status for specific beings, or (3) statistically indeterministic, thus being compelled to consider everything as partially causal, or even non-causal in the interpretation of statistics’ orientation to epistemically logical decisions and determinations based on data. If this has not been the case, can anyone suggest proofs for an alleged existence of a different sort of physics and cosmology until today?
The statistician does not even realize (1) that Universal Causality is already granted by the very existence of anything, and (2) that what they call non-causality is merely the not being the cause, or not having been discovered as the cause, of a specific set of selected data or processes. Such non-causality is not with respect to all existents. Quantum physics, statistical physics, and cosmology are replete with examples for this empirical and technocratic treachery of the notion of science.
A topology and mereologically clean physical ontology of causal continuity between partially discrete processual objects, fully free of absolutely continuity-oriented or absolutely discreteness-oriented category theory, geometry, topology, functional analysis, set theory, and logic, are yet to be born. Hence, the fundamentality of Universal Causality in its deep roots in the very concept of the To Be (namely, in the physical-ontological Categories of Extension and Change) of all physically and non-vacuously existent processes, is alien to physics and cosmology until today.
Non-integer rational numbers are not the direct notion of anything existent. Even a part of a unit process has the attribute ‘unity’ in all the senses in which any other object possesses transpire. For this reason, natural numbers have Categorial priority over rational numbers, because natural numbers are more directly related to ontological universals than other sorts of numbers are. Complex numbers, for example, are the most general number system for their sub-systems defined mathematically, but this does not mean that they are more primary in the metaphysics of ontological universals, since the primary mode of numerically quantitative qualities / universals is that of natural numbers.
4. Mathematics and Logic within Causal Metaphysics
Hence, it is important to define the limits of applicability of mathematics to the physics that use physical data (under the species of various layers of their origin). This is the only way to approximate beyond the data and the methodologically derived conclusions beyond the data. As to how and on what levels this is to be done is a matter to be discussed separately.
The same may be said also about logic and language. Logic is the broader rational picture of mathematics. Language is the symbolic manner of application of both logic and its quantitatively qualitative version, namely, mathematics, with respect to specific fields of inquiry. Here I do not explicitly discuss ordinary conversation, literature, etc.
We may do well to instantiate logic as the formulated picture of reason. But human reason is limited to the procedures of reasoning by brains. What exactly is the reason that existent physical processes constantly undergo? How to get at conclusions based on this reason of nature – by using our brain’s reasoning – and thus transcend at least to some extent the limitations set by data and methods in our brain’s reasoning?
If we may call the universal reason of Reality-in-total by a name, it is nothing but Universal Causality. It is possible to demonstrate that Universal Causality is a trans-physical, trans-scientific Law of Existence. This argument needs clarity. How to demonstrate this as the case? This has been done in an elementary fashion in the above, but more of it is not to be part of this discussion.
Insistence on mathematical continuity in nature is a mere idealization. It expects nature to obey our merely epistemic sort of idealizations, that is, in ideal cases based mostly on the brain-interpreted concepts from some layers of data, which are from some layers of phenomena, which are from some layers of the reality under observation. Some of the best examples in science are the suppositions that virtual worlds are existent worlds, dark energy is a kind of propagative energy, zero-value cosmic vacuum can create an infinite number of universes, etc.
The processes outside are vaguely presented primarily by the processes themselves, but highly indirectly, in a natural manner. This is represented by the epistemic / cognitive activity within the brain in a natural manner (by the connotative universals in the mind as reflections of the ontological universals in groups of object processes), and then idealized via concepts expressed in words, connectives, and sentences (not merely linguistic but also mathematical, computerized, etc.) by the symbolizing human tendency (thus creating denotative universals in words) to capture the whole of the object by use of a part of the human body-mind.
The symbolizing activity is based on data, but the data are not all we have as end results. We can mentally recreate the idealized results behind the multitude ontological, connotative, and denotative universals as existents.
As the procedural aftermath of this, virtual worlds begin to “exist”, dark energy begins to “propagate”, and zero-value cosmic vacuum “creates” universes. Even kinetic and potential energies are treated as propagative energies existent outside of material bodies and supposed to be totally different from material bodies. These are mere theoretically interim arrangements in the absence of direct certainty for the existence or not of unobservables.
Insistence on mathematical continuity in nature as a natural conclusion by the application of mathematics to nature is what happens in all physical and cosmological (and of course other) sciences insofar as they use mathematical idealizations to represent existent objects and processes and extrapolate further beyond them. Mathematical idealizations are another version of linguistic symbolization and idealization.
Logic and its direct quantitatively qualitative expression as found in mathematics are, of course, powerful tools. But, as being part of the denotative function of symbolic language, they are tendentially idealizational. By use of the same symbolizing tendency, it is perhaps possible to a certain extent to de-idealize the side-effects of the same symbols in the language, logic, and mathematics being used in order to symbolically idealize representations.
Merely mathematically following physical nature in whatever it is in its part-processes is a debilitating procedure in science and philosophy (and even in the arts and humanities), if this procedure is not de-idealized effectively. If this is possible at least to a small and humble extent, why not do it?Our language, logic, and mathematics too do their functions well, although they too are equally unable to capture the whole of Reality in whatever it is, wholly or in parts, far beyond the data and their interpretations! Why not de-idealize the side-effects of mathematics too?
This theoretical attitude of partially de-idealizing the effects of human symbolizing activity by use of the same symbolic activity accepts the existence of processual entities as whatever they are. This is what I call ontological commitment – of course, different from and more generalized than those of Quine and others. Perhaps such a generalization can give a slightly better concept of reality than is possible by the normally non-self-aware symbolic activity in language, logic, and mathematics.
5. Mathematics, Causality, and Contemporary Philosophical Schools
With respect to what we have been discussing, linguistic philosophyand even its more recent causalist child, namely, dispositionalist causal ontology, have even today the following characteristics:
(1) They attribute an even now overly discrete nature to “entities” in the extent of their causal separateness from others while considering them as entities. The ontological notion of an object or even of an event in its unity in analytic philosophy and in particular in modal ontology forecloses consideration of the process nature of each such unity within, on par with interactions of such units with one another. (David Lewis, Parts of Classes, p. vii) This is done without ever attempting to touch the deeply Platonic (better, geometrically atomistic) shades of common-sense Aristotelianism, Thomism, Newtonianism, Modernism, Quantum Physics, etc., and without reconciling the diametrically opposite geometrical tendency to make every physical representation continuous.
(2) They are logically comatose about the impossibility of the exactly referential definitional approach to the processual demands of existent physical objects without first analyzing and resolving the metaphysical implications of existent objects, namely, being irreducibly in finite Extension and Change and thus in continuous Universal Causality in finite extents at any given moment.
(3) They are unable to get at the causally fully continuous (neither mathematically continuous nor geometrically discontinuous) nature of the physical-ontologically “partially discrete” processual objects in the physical world, also because they have misunderstood the discreteness of processual objects (including quanta) within stipulated periods as typically universalizable due to their pragmatic approach in physics and involvement of the notion of continuity of time.
Phenomenology has done a lot to show the conceptual structures of ordinary reasoning, physical reasoning, mathematical and logical thinking, and reasoning in the human sciences. But due to its lack of commitment to building a physical ontology of the cosmos and due to its purpose as a research methodology, phenomenology has failed to an extent to show the nature of causal continuity (instead of mathematical continuity) in physically existent, processually discrete, objects in nature.
Hermeneutics has just followed the human-scientific interpretative aspect of Husserlian phenomenology and projected it as a method. Hence, it was no contender to accomplish the said fete.
Postmodern philosophies qualified all science and philosophy as being perniciously cursed to be “modernistic” – by thus monsterizing all compartmentalization, rules, laws, axiomatization, discovery of regularities in nature, logical rigidity, and even metaphysical grounding as insurmountable curses of the human project of knowing and as a synonym for all that are unapproachable in science and thought. The linguistic-analytic philosophy in later Wittgenstein too was no exception to this nature of postmodern philosophies – a matter that many Wittgenstein followers do not notice. Take a look at the first few pages of Wittgenstein’s Philosophical Investigations, and the matter will be more than clear.
The philosophies of the sciences seem today to follow the beaten paths of extreme pragmatism in linguistic-analytic philosophy, physics, mathematics, and logic, which lack a foundational concept of causally concrete and processual physical existence.
Hence, it is useful for the growth of science, philosophy, and humanities alike to research into the causal continuity between partially discrete “processual” objects and forget about absolute mathematical continuity or discontinuity in nature. Mathematics and the physical universe are to be reconciled in order to mutually delimit them in terms of the causal continuity between partially discrete processual objects.
Bibliography
(1) Gravitational Coalescence Paradox and Cosmogenetic Causality in Quantum Astrophysical Cosmology, 647 pp., Berlin, 2018.
(2) Physics without Metaphysics? Categories of Second Generation Scientific Ontology, 386 pp., Frankfurt, 2015.
(3) Causal Ubiquity in Quantum Physics: A Superluminal and Local-Causal Physical Ontology, 361 pp., Frankfurt, 2014.
(4) Essential Cosmology and Philosophy for All: Gravitational Coalescence Cosmology, 92 pp., KDP Amazon, 2022, 2nd Edition.
(5) Essenzielle Kosmologie und Philosophie für alle: Gravitational-Koaleszenz-Kosmologie, 104 pp., KDP Amazon, 2022, 1st Edition.