I am trying to simulate domain wall motion in nanowires. In [1] with the below mentioned parameters, the authors have simulated domain wall oscillation in a constricted nanowire. The constricted nano wire is designed by offsetting a portion of the nano-wire in transverse direction by 15 nm. I am trying to reproduce their result in mumax3. I have attached the image of the regions.
The material parameters are- saturation magnetization = 600e03 A/m^3 magnetic anisotropy energy = 1e05 J/m^3 exchange stiffness = 1.3e-11 J/m current density = 8.65e11 A/m^2 spin polarization of the applied current = 0.6 damping constant = 0.014 Polarized electric current is flowing along positive x-direction
MUMAX 3.9.1 Code
// The exchange length lex = {Aex/ (0.5*mu0*Msat^2)}^0.5
// In this model lex = 7.58 nm approx
// We are considering cell dimension 2nm X 2nm X 3nm
// Define gridsize & cellsize
Nx := 128
Ny := 64
Nz := 1
sizeX := 256e-9
sizeY := 128e-9
sizeZ := 3e-9
SetGridSize(Nx, Ny, Nz)
SetCellSize(sizeX/Nx, sizeY/Ny, sizeZ/Nz)
//Define geometry
struc1 := cuboid(100e-09,40e-09,3e-09).transl(-40e-09,0,0)
struc2 := cuboid(100e-09,40e-09,3e-09).transl(40e-09,-15e-09,0)
struc := struc1.add(struc2)
setgeom(struc)
//Define regions
defregion(1,struc)
save(regions)
//Define Material parameter
Msat.setregion(1,600e3) // Saturation Magnetization in A/m
Ku1.setregion(1,1e05) // 1st order uniaxial anisotropy constant in J/m^3
Aex.setregion(1,1.3e-11) // Exchange stiffness in J/m^3
alpha.setregion(1,0.014) // Landau-Lifshitz damping constant
//Define Initial Reduced Magnetization
m.setregion(1,twodomain(1,0,0, 1,1,0, -1,0,0))
//Save data and vector field
runtime := 1e-09
autosave(m.region(1),runtime/10)
tableautosave(runtime/10)
//Initialize excitation
J.setregion(1,vector(8.65e11,0,0)) // Current density vector in A/m^2
Pol.setregion(1,0.6) // Electrical current polarization
run(runtime)
I will be really thankful if you could help in this matter.
[1] Sbiaa, R., and M. Al Bahri. "Constricted nanowire with stabilized magnetic domain wall." Journal of Magnetism and Magnetic Materials 411 (2016): 113-115