One of the central themes in Dynamical Systems and Ergodic Theory is that of recurrence, which is a circle of results concerning how points in measurable dynamical systems return close to themselves under iteration. There are several types of recurrent behavior (exact recurrence, Poincaré recurrence, coherent recurrence , ...) for some classes of measurability-preserving discrete time dynamical systems. P. Johnson and A. Sklar in [Recurrence and dispersion under iteration of Čebyšev polynomials. J. Math. Anal. Appl. 54 (1976), no. 3, 752-771] regard the third type („ coherent recurrence” for measurability-preserving transformations) as being of at least equal physical significance, and this type of recurrence fails for Čebyšev polynomials. They also found that there is considerable evidence to support a conjecture that no (strongly) mixing transformation can exhibit coherent recurrence. (This conjecture has been proved by R. E. Rice in [On mixing transformations. Aequationes Math. 17 (1978), no. 1, 104-108].)