The author begins by defining and presenting the statistical theory of Cairo techniques and its B-transition matrix chains, and claims that it is the universal unified field theory.
In other words,
is it true that Cairo intelligence techniques = natural intelligence = artificial intelligence in the strict sense = unified field theory?
The statistical theory of Cairo techniques has been working effectively since 2020, that is, for four years, to numerically solve:
1- Time-dependent PDEs of classical physics in their most general form, such as LPDE PDEs, PPDE PDEs, and heat diffusion PDEs;
2- Time-dependent PDEs of quantum physics in 1D, 2D, and 3D;
3- Pure mathematical problems such as numerical integration, numerical differentiation, and the derivation of statistical distributions such as the Gaussian normal distribution. The only flaw in this theory is that it reveals the errors of the great scientists E. Schrödinger and Niels Bohr, which displeases both ardent defenders of Bohr and his followers.
Below, we show how to obtain the quantum transition matrix Q without resorting to the formula:
Q=√B
For 17 free 1D QM nodes, start with the sawtooth form of the outer product of,
[1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1]T
⊗
[1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1]
You finally obtain the 1D quantum transition matrix,
489^(1/32)/489 2*489^(1/32)/489 489^(1/32)/163 4*489^(1/32)/489 5*489^(1/32)/489 2*489^(1/32)/163 7*489^(1/32)/489 8*489^(1/32)/489 3*489^(1/32)/163 8*489^(1/32)/489 7*489^(1/32)/489 2*489^(1/32)/163 5*489^(1/32)/489 4*489^(1/32)/489 489^(1/32)/163 2*489^(1/32)/489 489^(1/32)/489
2*489^(1/32)/489 4*489^(1/32)/489 2*489^(1/32)/163 8*489^(1/32)/489 10*489^(1/32)/489 4*489^(1/32)/163 14*489^(1/32)/489 16*489^(1/32)/489 6*489^(1/32)/163 16*489^(1/32)/489 14*489^(1/32)/489 4*489^(1/32)/163 10*489^(1/32)/489 8*489^(1/32)/489 2*489^(1/32)/163 4*489^(1/32)/489 2*489^(1/32)/489
489^(1/32)/163 2*489^(1/32)/163 3*489^(1/32)/163 4*489^(1/32)/163 5*489^(1/32)/163 6*489^(1/32)/163 7*489^(1/32)/163 8*489^(1/32)/163 9*489^(1/32)/163 8*489^(1/32)/163 7*489^(1/32)/163 6*489^(1/32)/163 5*489^(1/32)/163 4*489^(1/32)/163 3*489^(1/32)/163 2*489^(1/32)/163 489^(1/32)/163
4*489^(1/32)/489 8*489^(1/32)/489 4*489^(1/32)/163 16*489^(1/32)/489 20*489^(1/32)/489 8*489^(1/32)/163 28*489^(1/32)/489 32*489^(1/32)/489 12*489^(1/32)/163 32*489^(1/32)/489 28*489^(1/32)/489 8*489^(1/32)/163 20*489^(1/32)/489 16*489^(1/32)/489 4*489^(1/32)/163 8*489^(1/32)/489 4*489^(1/32)/489
5*489^(1/32)/489 10*489^(1/32)/489 5*489^(1/32)/163 20*489^(1/32)/489 25*489^(1/32)/489 10*489^(1/32)/163 35*489^(1/32)/489 40*489^(1/32)/489 15*489^(1/32)/163 40*489^(1/32)/489 35*489^(1/32)/489 10*489^(1/32)/163 25*489^(1/32)/489 20*489^(1/32)/489 5*489^(1/32)/163 10*489^(1/32)/489 5*489^(1/32)/489
2*489^(1/32)/163 4*489^(1/32)/163 6*489^(1/32)/163 8*489^(1/32)/163 10*489^(1/32)/163 12*489^(1/32)/163 14*489^(1/32)/163 16*489^(1/32)/163 18*489^(1/32)/163 16*489^(1/32)/163 14*489^(1/32)/163 12*489^(1/32)/163 10*489^(1/32)/163 8*489^(1/32)/163 6*489^(1/32)/163 4*489^(1/32)/163 2*489^(1/32)/163
7*489^(1/32)/489 14*489^(1/32)/489 7*489^(1/32)/163 28*489^(1/32)/489 35*489^(1/32)/489 14*489^(1/32)/163 49*489^(1/32)/489 56*489^(1/32)/489 21*489^(1/32)/163 56*489^(1/32)/489 49*489^(1/32)/489 14*489^(1/32)/163 35*489^(1/32)/489 28*489^(1/32)/489 7*489^(1/32)/163 14*489^(1/32)/489 7*489^(1/32)/489
8*489^(1/32)/489 16*489^(1/32)/489 8*489^(1/32)/163 32*489^(1/32)/489 40*489^(1/32)/489 16*489^(1/32)/163 56*489^(1/32)/489 64*489^(1/32)/489 24*489^(1/32)/163 64*489^(1/32)/489 56*489^(1/32)/489 16*489^(1/32)/163 40*489^(1/32)/489 32*489^(1/32)/489 8*489^(1/32)/163 16*489^(1/32)/489 8*489^(1/32)/489
3*489^(1/32)/163 6*489^(1/32)/163 9*489^(1/32)/163 12*489^(1/32)/163 15*489^(1/32)/163 18*489^(1/32)/163 21*489^(1/32)/163 24*489^(1/32)/163 27*489^(1/32)/163 24*489^(1/32)/163 21*489^(1/32)/163 18*489^(1/32)/163 15*489^(1/32)/163 12*489^(1/32)/163 9*489^(1/32)/163 6*489^(1/32)/163 3*489^(1/32)/163
8*489^(1/32)/489 16*489^(1/32)/489 8*489^(1/32)/163 32*489^(1/32)/489 40*489^(1/32)/489 16*489^(1/32)/163 56*489^(1/32)/489 64*489^(1/32)/489 24*489^(1/32)/163 64*489^(1/32)/489 56*489^(1/32)/489 16*489^(1/32)/163 40*489^(1/32)/489 32*489^(1/32)/489 8*489^(1/32)/163 16*489^(1/32)/489 8*489^(1/32)/489
7*489^(1/32)/489 14*489^(1/32)/489 7*489^(1/32)/163 28*489^(1/32)/489 35*489^(1/32)/489 14*489^(1/32)/163 49*489^(1/32)/489 56*489^(1/32)/489 21*489^(1/32)/163 56*489^(1/32)/489 49*489^(1/32)/489 14*489^(1/32)/163 35*489^(1/32)/489 28*489^(1/32)/489 7*489^(1/32)/163 14*489^(1/32)/489 7*489^(1/32)/489
2*489^(1/32)/163 4*489^(1/32)/163 6*489^(1/32)/163 8*489^(1/32)/163 10*489^(1/32)/163 12*489^(1/32)/163 14*489^(1/32)/163 16*489^(1/32)/163 18*489^(1/32)/163 16*489^(1/32)/163 14*489^(1/32)/163 12*489^(1/32)/163 10*489^(1/32)/163 8*489^(1/32)/163 6*489^(1/32)/163 4*489^(1/32)/163 2*489^(1/32)/163
5*489^(1/32)/489 10*489^(1/32)/489 5*489^(1/32)/163 20*489^(1/32)/489 25*489^(1/32)/489 10*489^(1/32)/163 35*489^(1/32)/489 40*489^(1/32)/489 15*489^(1/32)/163 40*489^(1/32)/489 35*489^(1/32)/489 10*489^(1/32)/163 25*489^(1/32)/489 20*489^(1/32)/489 5*489^(1/32)/163 10*489^(1/32)/489 5*489^(1/32)/489
4*489^(1/32)/489 8*489^(1/32)/489 4*489^(1/32)/163 16*489^(1/32)/489 20*489^(1/32)/489 8*489^(1/32)/163 28*489^(1/32)/489 32*489^(1/32)/489 12*489^(1/32)/163 32*489^(1/32)/489 28*489^(1/32)/489 8*489^(1/32)/163 20*489^(1/32)/489 16*489^(1/32)/489 4*489^(1/32)/163 8*489^(1/32)/489 4*489^(1/32)/489
489^(1/32)/163 2*489^(1/32)/163 3*489^(1/32)/163 4*489^(1/32)/163 5*489^(1/32)/163 6*489^(1/32)/163 7*489^(1/32)/163 8*489^(1/32)/163 9*489^(1/32)/163 8*489^(1/32)/163 7*489^(1/32)/163 6*489^(1/32)/163 5*489^(1/32)/163 4*489^(1/32)/163 3*489^(1/32)/163 2*489^(1/32)/163 489^(1/32)/163
2*489^(1/32)/489 4*489^(1/32)/489 2*489^(1/32)/163 8*489^(1/32)/489 10*489^(1/32)/489 4*489^(1/32)/163 14*489^(1/32)/489 16*489^(1/32)/489 6*489^(1/32)/163 16*489^(1/32)/489 14*489^(1/32)/489 4*489^(1/32)/163 10*489^(1/32)/489 8*489^(1/32)/489 2*489^(1/32)/163 4*489^(1/32)/489 2*489^(1/32)/489
489^(1/32)/489 2*489^(1/32)/489 489^(1/32)/163 4*489^(1/32)/489 5*489^(1/32)/489 2*489^(1/32)/163 7*489^(1/32)/489 8*489^(1/32)/489 3*489^(1/32)/163 8*489^(1/32)/489 7*489^(1/32)/489 2*489^(1/32)/163 5*489^(1/32)/489 4*489^(1/32)/489 489^(1/32)/163 2*489^(1/32)/489 489^(1/32)/489
Whose eigenstate vector is,
[1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1]T
-------
Similarly, for 9 free 2D QM nodes, start with the sawtooth form of the outer product of:
[1 2 1 2 3 2 1 2 1] T
⊗
[1 2 1 2 3 2 1 2 1]
You finally obtain the 2D quantum transition matrix:
29^(1/8)/29 2*29^(1/8)/29 29^(1/8)/29 2*29^(1/8)/29 3*29^(1/8)/29 2*29^(1/8)/29 29^(1/8)/29 2*29^(1/8)/29 29^(1/8)/29
2*29^(1/8)/29 4*29^(1/8)/29 2*29^(1/8)/29 4*29^(1/8)/29 6*29^(1/8)/29 4*29^(1/8)/29 2*29^(1/8)/29 4*29^(1/8)/29 2*29^(1/8)/29
29^(1/8)/29 2*29^(1/8)/29 29^(1/8)/29 2*29^(1/8)/29 3*29^(1/8)/29 2*29^(1/8)/29 29^(1/8)/29 2*29^(1/8)/29 29^(1/8)/29
2*29^(1/8)/29 4*29^(1/8)/29 2*29^(1/8)/29 4*29^(1/8)/29 6*29^(1/8)/29 4*29^(1/8)/29 2*29^(1/8)/29 4*29^(1/8)/29 2*29^(1/8)/29
3*29^(1/8)/29 6*29^(1/8)/29 3*29^(1/8)/29 6*29^(1/8)/29 9*29^(1/8)/29 6*29^(1/8)/29 3*29^(1/8)/29 6*29^(1/8)/29 3*29^(1/8)/29
2*29^(1/8)/29 4*29^(1/8)/29 2*29^(1/8)/29 4*29^(1/8)/29 6*29^(1/8)/29 4*29^(1/8)/29 2*29^(1/8)/29 4*29^(1/8)/29 2*29^(1/8)/29
29^(1/8)/29 2*29^(1/8)/29 29^(1/8)/29 2*29^(1/8)/29 3*29^(1/8)/29 2*29^(1/8)/29 29^(1/8)/29 2*29^(1/8)/29 29^(1/8)/29
2*29^(1/8)/29 4*29^(1/8)/29 2*29^(1/8)/29 4*29^(1/8)/29 6*29^(1/8)/29 4*29^(1/8)/29 2*29^(1/8)/29 4*29^(1/8)/29 2*29^(1/8)/29
29^(1/8)/29 2*29^(1/8)/29 29^(1/8)/29 2*29^(1/8)/29 3*29^(1/8)/29 2*29^(1/8)/29 29^(1/8)/29 2*29^(1/8)/29 29^(1/8)/29
Whose eigenstate vector is:
[1 2 1 2 3 2 1 2 1] T
--------------------
Once again, for 27 free 3D QM nodes, let's start with the sawtooth form of the outer product of:
[1 2 1 2 3 2 1 2 1 2 3 2 3 4 3 2 3 2 1 2 1 2 3 2 1 2 1
] T
⊗
{1 2 1 2 3 2 1 2 1 2 3 2 3 4 3 2 3 2 1 2 1 2 3 2 1 2 1]
We finally obtain the 3D quantum transition matrix:
3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126
3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 4*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63
3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126
3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 4*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63
3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 2*3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42
3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 4*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63
3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126
3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 4*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63
3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126
3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 4*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63
3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 2*3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42
3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 4*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63
3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 2*3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42
2*3^0.5*14^(1/4)/63 4*3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 4*3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/21 4*3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 4*3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 4*3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/21 4*3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/21 8*3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/21 4*3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/21 4*3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 4*3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 4*3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/21 4*3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 4*3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63
3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 2*3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42
3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 4*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63
3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 2*3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42
3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 4*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63
3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126
3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 4*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63
3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126
3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 4*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63
3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 2*3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/14 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/21 3^0.5*14^(1/4)/42
3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 4*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63
3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126
3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 4*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/21 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/63
3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 2*3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/42 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126 3^0.5*14^(1/4)/63 3^0.5*14^(1/4)/126
Whose eigenstate vector is:
[1 2 1 2 3 2 1 2 1 2 3 2 3 4 3 2 3 2 1 2 1 2 3 2 1 2 1] T
Note that all the above numeric values are expressed as dimensionless arithmetic numeric values.