First did the NVT equilibration using below mdp file: title = OPLS Lysozyme NVT equilibration define = -DPOSRES ; position restrain the protein ; Run parameters integrator = md ; leap-frog integrator nsteps = 500000 ; 2 * 500000 = 1000 ps dt = 0.002 ; 2 fs ; Output control nstxout = 500 ; save coordinates every 1.0 ps nstvout = 500 ; save velocities every 1.0 ps nstenergy = 500 ; save energies every 1.0 ps nstlog = 500 ; update log file every 1.0 ps ; Bond parameters continuation = no ; first dynamics run constraint_algorithm = lincs ; holonomic constraints constraints = h-bonds ; bonds involving H are constrained lincs_iter = 1 ; accuracy of LINCS lincs_order = 4 ; also related to accuracy ; Nonbonded settings cutoff-scheme = Verlet ; Buffered neighbor searching ns_type = grid ; search neighboring grid cells nstlist = 10 ; 20 fs, largely irrelevant with Verlet rcoulomb = 1.0 ; short-range electrostatic cutoff (in nm) rvdw = 1.0 ; short-range van der Waals cutoff (in nm) DispCorr = EnerPres ; account for cut-off vdW scheme ; Electrostatics coulombtype = PME ; Particle Mesh Ewald for long-range electrostatics pme_order = 4 ; cubic interpolation fourierspacing = 0.16 ; grid spacing for FFT ; Temperature coupling is on tcoupl = V-rescale ; modified Berendsen thermostat tc-grps = Protein Non-Protein ; two coupling groups - more accurate tau_t = 0.1 0.1 ; time constant, in ps ref_t = 300 300 ; reference temperature, one for each group, in K ; Pressure coupling is off pcoupl = no ; no pressure coupling in NVT ; Periodic boundary conditions pbc = xyz ; 3-D PBC ; Velocity generation gen_vel = yes ; assign velocities from Maxwell distribution gen_temp = 300 ; temperature for Maxwell distribution gen_seed = -1 ; generate a random seed

Then I did NPT Equilibration where I introduced Simulated Annealing parameters:

title = OPLS Lysozyme NPT equilibration define = -DPOSRES ; position restrain the protein ; Run parameters integrator = md ; leap-frog integrator nsteps = 50000 ; 2 * 50000 = 100 ps dt = 0.002 ; 2 fs ; Output control nstxout = 500 ; save coordinates every 1.0 ps nstvout = 500 ; save velocities every 1.0 ps nstenergy = 500 ; save energies every 1.0 ps nstlog = 500 ; update log file every 1.0 ps ; Bond parameters continuation = yes ; Restarting after NVT constraint_algorithm = lincs ; holonomic constraints constraints = h-bonds ; bonds involving H are constrained lincs_iter = 1 ; accuracy of LINCS lincs_order = 4 ; also related to accuracy ; Nonbonded settings cutoff-scheme = Verlet ; Buffered neighbor searching ns_type = grid ; search neighboring grid cells nstlist = 10 ; 20 fs, largely irrelevant with Verlet scheme rcoulomb = 1.0 ; short-range electrostatic cutoff (in nm) rvdw = 1.0 ; short-range van der Waals cutoff (in nm) DispCorr = EnerPres ; account for cut-off vdW scheme ; Electrostatics coulombtype = PME ; Particle Mesh Ewald for long-range electrostatics pme_order = 4 ; cubic interpolation fourierspacing = 0.16 ; grid spacing for FFT ; Temperature coupling is on tcoupl = V-rescale ; modified Berendsen thermostat tc-grps = Protein Non-Protein ; two coupling groups - more accurate tau_t = 0.1 0.1 ; time constant, in ps ref_t = 300 300 ; reference temperature, one for each group, in K ; Pressure coupling is on pcoupl = Parrinello-Rahman ; Pressure coupling on in NPT pcoupltype = isotropic ; uniform scaling of box vectors tau_p = 2.0 ; time constant, in ps ref_p = 1.0 ; reference pressure, in bar compressibility = 4.5e-5 ; isothermal compressibility of water, bar^-1 refcoord_scaling = com ; Periodic boundary conditions pbc = xyz ; 3-D PBC ; Velocity generation gen_vel = no ; Velocity generation is off

; SIMULATED ANNEALING ; Type of annealing for each temperature group (no/single/periodic) annealing = single single ; Number of time points to use for specifying annealing in each group annealing_npoints = 2 2 ; List of times at the annealing points for each group annealing_time = 0 50000 0 50000 ; Temp. at each annealing point, for each group. annealing_temp = 300 500 300 500

But still there is no change in temperature profile. Avg. temperature is 300K.

I have 10 protein molecules and around 500 molecules of water in my system along with ions added in ionization step.

More Chahat Jain's questions See All
Similar questions and discussions