How to use the fine-tuned bert pytorch model for classification (CoLa) task?

I do not see the argument `--do_predict`, in /examples/run_classifier.py.

However, `--do_predict` exists in the original implementation of the Bert.

The fine-tuned model is getting saving in the BERT_OUTPUT_DIR as pytorch_model.bin, but is there a simple way to reuse it through the command line?

Using Pytorch implementation from: https://github.com/huggingface/pytorch-pretrained-BERT

The command which I am using to execute the code is given below:

python run_classifier.py \ --task_name CoLA \ --do_train \ --do_eval \ --do_lower_case \ --data_dir ./split/ \ --bert_model bert-base-uncased \ --max_seq_length 128 \ --train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 3.0 \

More Ashwin Geet D'Sa's questions See All
Similar questions and discussions