How uniform is the population? How is the characteristic distributed in the population? What characteristic are you looking for? What is the process? What is the result?
Determining the sample sizes involve resource and statistical issues. Usually, researchers regard 100 participants as the minimum sample size when the population is large. However, In most studies the sample size is determined effectively by two factors: (1) the nature of data analysis proposed and (2) estimated response rate.
For example, if you plan to use a linear regression a sample size of 50+ 8K is required, where K is the number of predictors. Some researchers believes it is desirable to have at least 10 respondents for each item being tested in a factor analysis, Further, up to 300 responses is not unusual for Likert scale development according to other researchers.
Another method of calculating the required sample size is using the Power and Sample size program (www.power-analysis.com).
Determining the sample sizes involve resource and statistical issues. Usually, researchers regard 100 participants as the minimum sample size when the population is large. However, In most studies the sample size is determined effectively by two factors: (1) the nature of data analysis proposed and (2) estimated response rate.
For example, if you plan to use a linear regression a sample size of 50+ 8K is required, where K is the number of predictors. Some researchers believes it is desirable to have at least 10 respondents for each item being tested in a factor analysis, Further, up to 300 responses is not unusual for Likert scale development according to other researchers.
Another method of calculating the required sample size is using the Power and Sample size program (www.power-analysis.com).
Slovin's Formula. - is used to calculate the sample size (n) given the population size (N) and a margin of error (e). -It is computed as n = N / (1+Ne2).