Linear stability analysis fails to determine the local stability property of a non-hyperbolic equilibrium point as there is a emergence of a centre subspace (other than stable and unstable subspace) of the linearized system corresponding to the eigenvalue whose real part is zero. Centre manifold of the corresponding nonlinear system may not be unique. So, what is the exact procedure to analyze such kind of situation?

More Jyotirmoy Roy's questions See All
Similar questions and discussions