Methods for the determination of radium isotopes in environmental solids by gamma spectrometry can be obtained by two means, the direct measurement of the principal photopeaks (186 keV in the case of 226Ra), and indirect measurement using the gamma radiation emitting progeny. The advantage of using the direct measurement method, particularly for 226Ra, is that the sample can be prepared and measured immediately without the need for progeny ingrowth. The disadvantages of this method relate primarily in that the emission probability of this gamma photopeak is quite weak (3.28%), and furthermore by the presence of the interfering primary gamma emission of 235U at 185.7 keV that has a higher photon emission probability of 57.24%. While 235U generally presents at a much lower activity concentration than 226Ra in environmental samples, it has an effective photon emission of ~ 2.6% at this energy (assuming a natural U isotopic ratio). The energy resolution of currently available HPGe spectrometers is generally considered insufficient to separate the two peaks. If no chemical separation is carried out initially, quantification of 226Ra via the 186 keV gamma line must be conducted by attempting to quantify the contribution of the 235U isotope to the doublet peak.

More Md. Abu Haydar's questions See All
Similar questions and discussions