Let E in P3be a real elliptic normal curve with two non-null-homotopic components. Is there a parametrization (R/Z) x (Z/2Z) -> E such that any four points on E are coplanar precisely when their corresponding parameters sum to zero? As an example one could take E to be the complete intersection of the quadrics XY + ZW = 0 and -X2 + Y2 - 2Z2 + ZW + 2W2 = 0.

For more details (and better formatting), see the corresponding question on MathOverflow: http://mathoverflow.net/questions/197848/ .

http://mathoverflow.net/questions/197848/

Similar questions and discussions