I am using ORL face Database for face recognition. There are 40 subjects each with 10 images each. The size of each image is 112 * 92 pixels. For feature extraction and dimensionality reduction, I used 2D- PCA. The feature matrix is now 112*8.
Following is the code after feature extraction --
% TrainFaces --- shape is 240 * 112 *8 (contains 240 images (8 images of 40 persons))
% ValFaces --- shape is 80 * 112 *8 (contains 80 images (2 images of 40 persons))
% TestFaces --- shape is 80 * 112 *8 (contains 80 images (2 images of 40 persons))
% train_target -- shape is 40 * 240 (1st bit is 1 if it is 1st image and all rest zero)
% val_target -- shape is 40 * 240
% test_target -- shape is 40 * 240
EigenFaces = [TrainFaces ; ValFaces ; TestFaces];
target = [train_target val_target test_target];
%%%%%%%%%% Now we can convert feature matrix into feature vector %%%%%%%%%%%%%
input = [];
for i = 1:size(EigenFaces,1)
end
%%%%%%%% Creating Network and Training Them %%%%%%%%%%%
setdemorandstream(491218382);
net = patternnet(25);
net.divideFcn = 'divideind';
[net.divideParam.trainInd, net.divideParam.valInd, net.divideParam.testInd] = divideind(400,1:240,241:320,321:400);
net.trainFcn = 'trainrp';
[net,tr] = train(net,input,target);
%%%%%%%%%%%%% Testing the network %%%%%%%%%%%%%%%
predict = 0; % Number of correctly identified images out of 80
for i =1:80
end
predict
The predict always shows zero. Kindly help me analyse the graphs, thanks in advance.
Edit : I have uploaded the EigenFaces and Target values in the link given below. Kindly have a look.
http://goo.gl/DjfTWY