%%%%%% Code %%%%%%%
% train_input -- 224 * 320 matrix containing 80 samples each with 224 features
% test_input -- 224 * 80 matrix containing 80 samples each with 224 features
% train_target -- 40 * 320 containing 320 samples
% test_target -- 40 * 80 containing 80 samples
setdemorandstream(491218382);
net = patternnet(44);
net.performFcn = 'mse';
net.trainFcn = 'trainscg';
net.layers{1}.transferFcn = 'tansig';
net.layers{2}.transferFcn = 'tansig';
net.divideParam.trainRatio = 1.0; % training set [%]
net.divideParam.valRatio = 0.0; % validation set [%]
net.divideParam.testRatio = 0.0; % test set [%]
net.trainParam.epochs = 300;
net.trainParam.showWindow = 0;
[net,tr] = train(net,train_input,train_target)
%%%%%%% Inbuilt Testing of the Network %%%%%%%%%%
testY = net(test_input);
[c,cm] = confusion(test_target,testY);
fprintf('Percentage Correct Classification : %f%%\n', 100*(1-c));
%%% Output : Percentage Correct Classification : 95 % %%%
%%%%%%% Custom Designed Testing of the Network %%%%%%%%%%%
wb = formwb(net,net.b,net.iw,net.lw);
[b,iw,lw] = separatewb(net,wb);
weight_input = iw{1,1};
weight_hidden = lw{2,1};
bias_input = b{1,1};
bias_hidden = b{2,1};
test_input = mapminmax(test_input);
test_input = removeconstantrows(test_input);
hidden = [];
output = [];
indx = [];
for j = 1:80
%%%%%% 1st Layer Calculation %%%%%.
for k = 1:44
weighted_sum = sum(times(test_input(:,j),weight_input(k,:)'));
hidden(k,j) = 2/(1+exp(-2*(weighted_sum + bias_input(k))))-1;
end
%%%%%% 2nd Layer Calculation %%%%%
for k = 1:40
weighted_sum = sum(times(hidden(:,j),weight_hidden(k,:)'));
output(k,j) = 2/(1+exp(-2*(weighted_sum + bias_hidden(k))))-1;
end
end
output = mapminmax(output);
[c,cm] = confusion(test_target,output);
fprintf('Percentage Correct Classification : %f%%\n', 100*(1-c));
%%%%%% Output : Percentage Correct Classification : 90 % %%%%%%
Why is there a difference in percentage of correct classification when both are expected to be equal?
P.S - Attached is the matlab file for input and target values
http://1drv.ms/1HGZprl