Hey everyone,
currently, I am working with Gaussian process latent variable based models. In literature, the model likelihood is discussed for model selection.
Unfortunately, this does not work for my application. Currently I am using the log likelihood and the reconstruction error. The model likelihood increases and the reconstruction error decreases with increasing dimension/inducing points. BIC doesn't make sense in this context (and behave similar...).
Are there better parameters for model selection?
All the best,
Will