Induction of apoptosis in malignant cells is a major goal of cancer therapy in general and of certain cancer gene therapy strategies in particular. Numerous apoptosis-regulating genes have been evaluated for this purpose. Besides the most prominent p53 gene others include p16, p21, p27, E2F genes, FHIT, PTEN and CASPASE genes. Recently, the potential for therapy of an adenoviral gene, E1A, known for a long time for its apoptosis-inducing activity, has been discovered. In experimental settings, these genes have proven their tumor-suppressive and apoptosis-inducing activity.
The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death.
In normal tissues there is a balance between the generation of new cells via cell division and the loss of cells via cell death. Old cells become damaged over time and are eliminated. This is an essential form of renewal. Examples include shedding of skin cells and the replacement of the cells lining our digestive tract. Like cell division, cell death is also tightly controlled. Cells frequently die by a process termed programmed cell death or apoptosis.
Apoptosis is a very orderly process during which the genome of the cell is broken down, the cell is fragmented into smaller pieces and the debris is consumed by nearby cells (phagocytes) that clean up the cell fragments. Besides getting rid of damaged, potentially dangerous cells, apoptosis is crucial for embryological development and neurologic pruning.
There are two distinct phases in apoptosis, the initiation phase and the execution phase. The initiation phase involves many different proteins and it is quite complex. It is started by various “stresses” from either outside the cell (extracellular) or inside the cell (intracellular). Some examples of extracellular signals that trigger apoptosis include loss of growth factors, low oxygen levels (hypoxia), and radiation. Intracellular signals include DNA damage, the damage caused by chemotherapy drugs, telomere malfunction, and infection with viruses. The initiation phase triggers the execution phase. The execution phase involves the activation of specialized enzymes (caspases and others) that directly result in cell death.
Apoptosis is a very orderly process during which the genome of the cell is broken down, the cell is fragmented into smaller pieces and the debris is consumed by nearby cells (phagocytes) that clean up the cell fragments. Besides getting rid of damaged, potentially dangerous cells, apoptosis is crucial for embryological development and neurologic pruning.
Notably absent from this list is ‘send out a signal.’ Apoptotic cells do not send out any signal, with one exception: they release apoptotic bodies and ‘engulfment proteins’ to induce other cells (‘phagocytic’ cells) to engulf the apoptotic bodies and and break them down in their lysosomes, but this is not much of an immune response.
Proteins important in apoptosis:
‘killer proteins’: the caspases (discussed in detail below).
‘destruction proteins’ that digest DNA, fragment the cell and break down the cytoskeleton
‘engulfment proteins’ that elicit and promote phagocytosis by other cells.
Apoptosis is a process of programmed cell death that occurs in multicellular organisms.[2] Biochemical events lead to characteristic cell changes (morphology) and death. These changes include blebbing, cell shrinkage, nuclear fragmentation, chromatin condensation, chromosomal DNA fragmentation, and global[vague]mRNA decay. Between 50 and 70 billion cells die each day due to apoptosis in the average human adult.[a] For an average child between the ages of 8 and 14, approximately 20 to 30 billion cells die a day .
Apoptosis is a very orderly process during which the genome of the cell is broken down, the cell is fragmented into smaller pieces and the debris is consumed by nearby cells (phagocytes) that clean up the cell fragments. Besides getting rid of damaged, potentially dangerous cells, apoptosis is crucial for embryological development and neurologic pruning.
There are two distinct phases in apoptosis, the initiation phase and the execution phase. The initiation phase involves many different proteins and it is quite complex. It is started by various “stresses” from either outside the cell (extracellular) or inside the cell (intracellular). Some examples of extracellular signals that trigger apoptosis include loss of growth factors, low oxygen levels (hypoxia), and radiation. Intracellular signals include DNA damage, the damage caused by chemotherapy drugs, telomere malfunction, and infection with viruses. The initiation phase triggers the execution phase. The execution phase involves the activation of specialized enzymes (caspases and others) that directly result in cell death.