We have at least two different definitions of “infinite” (“actual infinite” and “potential infinite”) since antiquity, and these two different “infinites” with different natures unavoidably become the foundation of present classical infinite related science theory system dominating all the infinite related contents as well as all of our infinite related cognizing activities since then.
When one faces an infinite related content in mathematical analysis, is it in “actual infinite mathematical analysis” or “potential infinite mathematical analysis”?
The infinite small (few) related errors and paradox families (such as the newly discovered Harmonic Series Paradox) and the infinite big (many) related errors and paradox families (such as the newly discovered Cantor’s ideas and operating process of mistaken diagonal proof of “the elements in real number set are more infinite than that in natural number set”) are typical examples of “master pieces of confusing potential infinite and actual infinite”.