This is more a personal question than one related directly to my research (although i am interested in sensorimotor rehabilitation in general). I have a family member who has hemiplegia because of a stroke, and they are considering stem cell treatment offered by a private clinic in Asia. Can autologous stem cells (harvested from one's own fat cells and blood) injected intramuscularly find its way to the brain to repair damaged cortical areas? The doctors who have performed the stem cell therapy (and who claim to have seen significant improvements in some of their patients) tell me three things:
1) Stem cells are automatically attracted to cytokines that signal areas in the body that need repair;
2) These stem cells can be effective even when injected intramuscularly and not intravenously or directly at the site of damage, because cytokines guide the stem cells where they need to go;
3) These stem cells can penetrate the blood-brain barrier.
How true are these claims? I've been looking up research and opinion pieces online already, but I'm expanding my search strategy to include RG. This is what I'm looking at:
Aleynik, A., Gernavage, K. M., Mourad, Y. S., Sherman, L. S., Liu, K., Gubenko, Y. A., & Rameshwar, P. (2014). Stem cell delivery of therapies for brain disorders. Clinical and Translational Medicine, 3, 24. https://doi.org/10.1186/2001-1326-3-24 Bai, L., Lennon, D. P., Caplan, A. I., DeChant, A., Hecker, J., Kranso, J., … Miller, R. H. (2012). Hepatocyte growth factor mediates MSCs stimulated functional recovery in animal models of MS. Nature Neuroscience, 15(6), 862–870. https://doi.org/10.1038/nn.3109 Banerjee, S., Bentley, P., Hamady, M., Marley, S., Davis, J., Shlebak, A., … Chataway, J. (2014). Intra-Arterial Immunoselected CD34+ Stem Cells for Acute Ischemic Stroke. STEM CELLS Translational Medicine, 3(11), 1322–1330. https://doi.org/10.5966/sctm.2013-0178 Berkowitz, A. L., Miller, M. B., Mir, S. A., Cagney, D., Chavakula, V., Guleria, I., … Chi, J. H. (2016). Glioproliferative Lesion of the Spinal Cord as a Complication of “Stem-Cell Tourism.” New England Journal of Medicine, 375(2), 196–198. https://doi.org/10.1056/NEJMc1600188 Gross, G., & Häupl, T. (Eds.). (2013). Stem cell-dependent therapies: mesenchymal stem cells in chronic inflammatory disorders. Berlin: De Gruyter. Harris, V. K., Yan, Q. J., Vyshkina, T., Sahabi, S., Liu, X., & Sadiq, S. A. (2012). Clinical and pathological effects of intrathecal injection of mesenchymal stem cell-derived neural progenitors in an experimental model of multiple sclerosis. Journal of the Neurological Sciences, 313(1–2), 167–177. https://doi.org/10.1016/j.jns.2011.08.036 Hess, D. C., Wechsler, L. R., Clark, W. M., Savitz, S. I., Ford, G. A., Chiu, D., … Mays, R. W. (2017). Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. The Lancet Neurology, 16(5), 360–368. https://doi.org/10.1016/S1474-4422(17)30046-7 Liu, L., Eckert, M. A., Riazifar, H., Kang, D.-K., Agalliu, D., & Zhao, W. (2013). From Blood to the Brain: Can Systemically Transplanted Mesenchymal Stem Cells Cross the Blood-Brain Barrier? Stem Cells International, 2013. https://doi.org/10.1155/2013/435093 Steinberg, G. K., Kondziolka, D., Wechsler, L. R., Lunsford, L. D., Coburn, M. L., Billigen, J. B., … Schwartz, N. E. (2016). Clinical Outcomes of Transplanted Modified Bone Marrow–Derived Mesenchymal Stem Cells in Stroke: A Phase 1/2a Study. Stroke, STROKEAHA.116.012995. https://doi.org/10.1161/STROKEAHA.116.012995 Turner, L., & Knoepfler, P. (2016). Selling Stem Cells in the USA: Assessing the Direct-to-Consumer Industry. Cell Stem Cell, 19(2), 154–157. https://doi.org/10.1016/j.stem.2016.06.007 Webb, R. L., Kaiser, E. E., Scoville, S. L., Thompson, T. A., Fatima, S., Pandya, C., … Stice, S. L. (2017). Human Neural Stem Cell Extracellular Vesicles Improve Tissue and Functional Recovery in the Murine Thromboembolic Stroke Model. Translational Stroke Research, 1–10. https://doi.org/10.1007/s12975-017-0599-2