In relativity (GTR, STR) we hear of masslessness. What is the meaning of it with respect to really (not merely measurementally) existent particles / waves?

I am of the opinion that, while propagating, naturally, wavicles have mass, and there is no situation where they are absolutely at rest or at rest mass. But we know that there are zero rest masses in physics. These are in my opinion masses obtained when the moving wavicle is relatively at rest. Thus, the energy here is supposed to be at a relative zero.

But such a relative rest is obtainable only with respect to a few movements (under consideration at a given relativistic situation); and always there will be some other physical processes around and within, with respect to which the zero rest mass wavicle already contextually taken as in zero rest mass is not at zero rest mass and zero energy.

If the relatively achieved zero rest mass and/or non-zero mass may always be conceived as the real mass, then nothing has a constant and permanent "own mass". In that case, any specific contextual mass must be fixed for contexts only, and the only thing that may be spoken of its mass is "finite", "non-zero and non-infinite".

This is a thing I have been thinking of giving as a realistic example for a method that I had developed in my 2018 book, in order to characterize the various, most general, accessible values attributable to processes. This is what I have called the maximal-medial-minimal (MMM) method of determining cosmological, physical, and other forms of access values of existent processes.

But I forgot to write down the said example. Recently I wrote it down as an example for discussing it in another book. But I realize that I can write a detailed section of a chapter about it.

The MMM method is based on determining the space, time, matter-energy content, etc. of anything, including the whole cosmos, as being of infinite or finite or zero value of any quantity. I have shown in the said book that this can be developed not only into a method in the philosophy of physics but also in the most general foundational notions and principles of all sciences.

More Raphael Neelamkavil's questions See All
Similar questions and discussions