When we want to use Lanthanide-based DNA dyes (Eu, Tb)for time-resolved real-time PCR, the colors are limit. So how to develop more multi-color Lanthanide-based DNA dyes?
In fluorescence-based detection, various types of imaging probes have been commercialized. Most imaging probes are fluorescent organic dyes that are used for sensing target ions or molecules. However, organic dyes have several drawbacks, such as poor chemical stability, photo-bleaching, broad emission spectra, and difficulties in conjugation with targeting ligands. Thus, inorganic nanoparticles (NPs) have been developed to replace conventional fluorescent organic dyes. Among them, semiconductor quantum dots (QDs) are promising candidates for fluorescence-based detection . Compared with organic probes, QDs have advantages, such as good chemical and photo-stability, a tunable emission wavelength by controlling the particle size, easy conjugation with biomolecules, and narrow emission spectra for less spectral overlap. Over the last two decades, QDs have been applied in the fields of animal imaging and disease marker sensing . Even though QDs exhibit interesting properties, their usage has been limited by critical issues such as potential human toxicity. Common QDs are composed of heavy metals (e.g., cadmium, lead, and mercury), which are potentially fatal to humans. In addition, there was a need to develop imaging probes with better detection sensitivity than QDs. To overcome these obstacles, new kinds of lanthanide-doped NPs have attracted attention as the next generation of imaging probes for highly sensitive fluorescence detection.