a cross-sectional study (also known as a cross-sectional analysis, transverse study, prevalence study) is a type of observational study that analyzes data from a population, or a representative subset, at a specific point in time—that is, cross-sectional data.
In economics, cross-sectional studies typically involve the use of cross-sectional regression, in order to sort out the existence and magnitude of causal effects of one or more independent variables upon a dependent variable of interest at a given point in time. They differ from time series analysis, in which the behavior of one or more economic aggregates is traced through time.
In medical research, cross-sectional studies differ from case-control studies in that they aim to provide data on the entire population under study, whereas case-control studies typically include only individuals with a specific characteristic, with a sample, often a tiny minority, of the rest of the population. Cross-sectional studies are descriptive studies (neither longitudinal nor experimental). Unlike case-control studies, they can be used to describe, not only the odds ratio, but also absolute risks and relative risks from prevalences (sometimes called prevalence risk ratio, or PRR).[1][2] They may be used to describe some feature of the population, such as prevalence of an illness, or they may support inferences of cause and effect. Longitudinal studies differ from both in making a series of observations more than once on members of the study population over a period of time.