The standard QM offers no explanation for the collapse postulate.

By the Bohmian mechanics (BM) there is no collapse, there exists a particle following some trajectory, and and detector fires if hit by that particle. Therefore, there is no collapse. However, BM has big problems in what concerns the photon, for which no particle and no trajectory is predicted. Thus, in the case of photons, it is not clear which deterministic mechanism suggests BM instead of the collapse.

The Ghirardi-Rimini-Weber (GRW) theory says that the collapse occurs due to the localization of the wave-function at some point, decided upon by a stochastic potential added to the Schrodinger equation. The probability of localization is very high inside a detector, where the studied particle interacts with the molecules of the material and gathers around itself a bigger and bigger number of molecules. Thus, at some step there grows a macroscopic body which is "felt" by the detector circuitry.

Personally, I have a problem with the idea that the collapse occurs at the interaction of the quantum system with a classical detector. If the quantum superposition is broken at this step, how does it happen that the quantum correlations are not broken?

For instance in the spin singlet ( |↑>|↓> - |↓>|↑>) one gets in a Stern-Gerlach measurement with the two magnetic fields identically oriented, either |↑>|↓>, or |↓>|↑>. The quantum superposition is broken. But the quantum correlation is preserved. On never obtains, if the magnetic fields have the same orientation, |↑>|↑>, or |↓>|↓>.

WHY SO? Practically, what connection may be maintained between the macroscopic body appearing in one detector, and the macroscopic body appearing in another detector, far away from the former? Why the quantum correlation is not broken, as is broken the quantum superposition?

More Sofia D. Wechsler's questions See All
Similar questions and discussions