I am looking for any book/article reference about the mathematical description of zero normal flux boundary condition for shallow water equations. My concern is that for a near-shore case how it is obvious to have zero normal flux. Physically, it does make sense that we have a near-shore case and on the boundary, there is no flow in the normal direction. How to mathematical explain it using the continuity equation in the case when there is a steady flow? The continuity equation suggests that $\partial h / \partial t + u. \partial h/ partial x = 0$. If we take steady flow then it is clear to me to get zero normal flux condition. But what if the first term is not zero? or do we say that at the boundary the flow is always steady?