The seemingly simple question, but nobody can answer it unambiguously.

Experimental setup to the question is shown in Figure 1 in

Preprint Tuning of Lifetime of Cooper pairs in a Massive Aluminum Ring

A persistent supercurrent flows in a SC aluminum ring. Then we connect the SC aluminum ring to an aluminum wire, the second end of the wire is in a separate chamber with T > Tc (or H > Hc) and is not SC. The temperature of the SC ring is stable below Tc. Thus the SC ring is electrically connected to a non-SC zone where electron pairs dissipate their supercurrent momenta on atom lattice. Will the remote non-SC zone suppress the persistent supercurrent in the SC ring?

The answer may be very informative. Electron pairs drift between connected SC and non-SC zones. The pair density in the SC zone is not zero, in the non-SC zone — zero. Hence the pairs annihilate and arise. So paired electrons in the SC ring are not permanently paired and become single for a while. Thus, if the supercurrent decays, it is a consequence of the non-permanency of pairs. In other words, the supercurrent is eternal if its pairs are permanent (what is the case when the SC and non-SC zones are disconnected).

More Stanislav Dolgopolov's questions See All
Similar questions and discussions