A discrete element method (DEM), also called a distinct element method, is any of a family of numerical methods for computing the motion and effect of a large number of small particles. Though DEM is very closely related to molecular dynamics, the method is generally distinguished by its inclusion of rotational degrees-of-freedom as well as stateful contact and often complicated geometries (including polyhedra). With advances in computing power and numerical algorithms for nearest neighbor sorting, it has become possible to numerically simulate millions of particles on a single processor. Today DEM is becoming widely accepted as an effective method of addressing engineering problems in granular and discontinuous materials, especially in granular flows, powder mechanics, and rock mechanics. Recently, the method was expanded into the Extended Discrete Element Method taking thermodynamics and coupling to CFD and FEM into account.
Discrete element methods are relatively computationally intensive, which limits either the length of a simulation or the number of particles. Several DEM codes, as do molecular dynamics codes, take advantage of parallel processing capabilities (shared or distributed systems) to scale up the number of particles or length of the simulation. An alternative to treating all particles separately is to average the physics across many particles and thereby treat the material as a continuum. In the case of solid-like granular behavior as in soil mechanics, the continuum approach usually treats the material as elastic or elasto-plastic and models it with the finite element method or a mesh free method. In the case of liquid-like or gas-like granular flow, the continuum approach may treat the material as a fluid and use computational fluid dynamics. Drawbacks to homogenization of the granular scale physics, however, are well-documented and should be considered carefully before attempting to use a continuum approach.
When long-range forces (typically gravity or the Coulomb force) are taken into account, then the interaction between each pair of particles needs to be computed. Both the number of interactions and cost of computation increase quadratically with the number of particles. This is not acceptable for simulations with large number of particles. A possible way to avoid this problem is to combine some particles, which are far away from the particle under consideration, into one pseudoparticle. Consider as an example the interaction between a star and a distant galaxy: The error arising from combining all the stars in the distant galaxy into one point mass is negligible. So-called tree algorithms are used to decide which particles can be combined into one pseudoparticle. These algorithms arrange all particles in a tree, a quadtree in the two-dimensional case and an octree in the three-dimensional case.
However, simulations in molecular dynamics divide the space in which the simulation take place into cells. Particles leaving through one side of a cell are simply inserted at the other side (periodic boundary conditions); the same goes for the forces. The force is no longer taken into account after the so-called cut-off distance (usually half the length of a cell), so that a particle is not influenced by the mirror image of the same particle in the other side of the cell. One can now increase the number of particles by simply copying the cells.
cited from https://en.wikipedia.org/wiki/Discrete_element_method
DEM is a numerical technique with the theoretical basis of the method originating from Sir Isaac Newton’s laws of motion. The total force experienced by individual grains or particles in a granular system is modeled and the subsequent accelerations, velocities, and positions are tracked over a period of time. The total force is the summation of contact forces (particle/particle and particle/boundary), and body forces, such as gravity, fluid, magnetic, or electrostatic forces. The major distinction between DEM and molecular dynamics (MD) is that in DEM, the finite particle collisions and rotations play a dominant role.
cited from http://www.powderbulksolids.com/article/what-discrete-element-method-09-10-2014
At present, the DEM parameters at the mesoscale can be truly determined on the basis of molecular dynamics simulations. The second approach was to set a series of arbitrary input parameters in DEM simulations until the results were in very close agreement to the experimental results, namely, sand-pile calibrations.
cited from Article Discrete Element Method Simulations of the Inter-Particle Co...