I have (at least) one organic compound in my aqueous samples which has a marked peak at ~0.1 ppm (see attached spectrum). I need to find out what it is. It is not TMS, since I use another internal standard at ~7.5 ppm. It's not a contamination from silicon grease (as some suggested in my previous question) since extensive negative controls performed on my experimental setup show absence of this peak. Other blanks show no other reagents I use have this peak.

CH4 is one of the potential products of my CO2-reduction (with H2) experiments. I did a spike test with this sample, and when I dissolve commercial methane into it the peak at 0.08 ppm does indeed become larger; supporting the idea that it's methane. I did GC-FID to see if I saw methane (see attached chromatogram). We don't have a suitable column for GC-MS unfortunately. The FID results show that whatever the peak at 1.35 min is, it isn't methane which has a peak at 1.52 min. The peak at 1.35 is absent in room air blanks, and I presume it's the same organic I see in the 1H-NMR results.

Another possible product of my experiments are (Ni or Fe) bound methyl groups: e.g. Fe-CH3, Fe-C3H9, etc. Which chemical shift should I expect from methyl protons attached to a metal atom? I suspect it would be similar to TMS, since that's exactly what TMS is, right? See the attached example of a Pt organometal chemical shift showing at 0.6 ppm.

More Eloi Camprubí-Casas's questions See All
Similar questions and discussions