Green plastics are the focus of an emerging industry focused on making convenient living consistent with environmental stability. One reason to make a shift toward the use of green plastics is the availability of raw materials. Green plastics can be made using polymers that come from agricultural and marine feedstocks. These are abundant natural resources that are constantly being replenished. This, in turn could revitalize rural economy, both agricultural and marine, by providing additional demand for currently underutilized land or low-valued biomass commodities. Another favorable property of green plastics is their biodegradability, making them a natural material for use in such applications as compostable collection bags, such as for food or yard waste. But bioplastics have to possess adequate physical properties. Their properties have to be managed and controlled with technological means through the development of adequate formulations and plastics processing. The commercial ventures already under way in the United States, Canada, Europe, and Japan indicate that there is confidence technological advances are possible. The key to solving technical problems often simply knows what the problems are. Bioplastics also have to be cost-competitive. Commercially available biopolymers are typically more expensive than synthetic polymers, often significantly so. Currently only starch competes with synthetic polymers in terms of cost.

Interest in the development of bioplastics will grow largely to the extent that there is real interest in and concern over the environment. Societal concern over the environment is already being reflected in governmental restrictive legislation on the use of plastics, particularly aimed at plastic packaging. Legislation has begun at the local, state, federal, and international levels, and legislation will undoubtedly increase in the future. New legislation will likely contain restrictions aimed at materials that are neither recyclable nor biodegradable. Labeling legislation may lead to an "ecolabel," based on a product's raw material usage, energy consumption, emissions from manufacture and use, and waste disposal impact. Most of all, what is needed is a paradigm shift.

Making it a reality Ignoring nature's way of building strong materials, we have, for many applications, over-engineered our plastics for stability, with little consideration of their recyclability or ultimate fate, and ended up transforming irreplaceable resources into mountains of waste. There is another way. We can take nature's building materials and use them for our purposes, without taking them out of nature's cycles. We can be borrowers, not consumers, so that the process can continue indefinitely. If society is indeed, becoming more and more committed to resource conservation, environmental preservation and sustainable technologies, bioplastics will find their place in this Age of Plastics. The widespread use of these new plastics will depend on developing technologies that can be successful in the marketplace. That in turn will partly depend on how strongly society is committed to the concepts of resource conservation, environmental preservation, and sustainable technologies. There are growing signs that people indeed want to live in greater harmony with nature and leave future generations a healthy planet. If so, bioplastics will find a place in the current Age of Plastics.

Plastics Plastics are a class of material that has one or more polymers as its primary ingredient, that is shaped by flow when it is processed (usually using heat), and that is solid in its final form. Plastics can be made up of many different kinds of polymer, and can be processed in many different ways, but as long as they satisfy these three conditions, they are bona fide plastics.

More Chandan Kumar Poddar's questions See All
Similar questions and discussions