What is a phenomenon called "false vacuum collapse"?
as you know :
Mean field energy and bubble formation. The cloud is initially prepared in FV with all atoms in |↑⟩ (A). Although the single spin mode |↓⟩ is lower in energy in the center of the cloud (E↓E↑), the opposite is true in the low-density tails. The interface (domain wall) between ferromagnetic regions with opposite magnetism has positive (kinetic) energy, which is added to the minimum double energy resulting from ferromagnetic interaction. Macroscopic tunneling can occur resonantly in the bubble mode (B), which has a |↓⟩ bubble in the center. The increase in core energy compensates for the cost of domain-wall energy. Crossing the barrier can be caused by quantum fluctuations at zero temperature (full arrow) or by thermal fluctuations at finite temperature (empty arrow). After the tunneling process, the bubble size increases in the presence of dissipation to reach the true vacuum (TV) state (C), without returning to (A). Credit: Nature Physics (2024). DOI: 10.1038/s41567-023-02345-4
An experiment carried out in Italy with theoretical support from the University of Newcastle provided the first experimental evidence of vacuum decay.
In quantum field theory, when a not-so-stable state becomes a true stable state, it is called a "pseudovacuum collapse." This happens through the creation of small local bubbles. While existing theoretical work can predict how often this bubble formation occurs, there is not much empirical evidence.
The Pitaevskii Center for Supercold Atoms Laboratory for the Bose-Einstein Condensation in Trento reports for the first time observations of phenomena related to the stability of our universe. The results are the result of a collaboration between the University of Newcastle, the National Institute of Optics CNR, the Department of Physics at the University of Trento and TIFFA-INFEN and are published in Nature Physics.
The results are supported by theoretical simulations and numerical models, confirming the origin of the decay quantum field and its thermal activation, and opening the way to simulate out-of-equilibrium quantum field phenomena in atomic systems.
This experiment uses a supercooled gas at a temperature less than one microkelvin from absolute zero. At this temperature, the bubbles appear as the vacuum collapses, and Newcastle University's Professor Ian Moss and Dr Tom Billam were able to conclusively show that the bubbles are the result of heat-activated vacuum collapse.
Ian Moss, Professor of Theoretical Cosmology at Newcastle University's School of Mathematics, Statistics and Physics, said: "Vacuum collapse is thought to play a central role in the creation of space, time and matter in the Big Bang, but so far it has not. In particle physics, the decay of the Higgs boson vacuum changes the laws of physics and creates what has been described as the 'ultimate ecological catastrophe'."
Dr Tom Bilam, Senior Lecturer in Applied/Quantum Mathematics, added: "Using the power of ultracold atom experiments to simulate analogues of quantum physics in other systems – in this case the early universe itself – is a very exciting area of research. the moment."
This research opens new avenues in understanding the early universe as well as ferromagnetic quantum phase transitions.
This groundbreaking experiment is only the first step in the discovery of vacuum decay. The ultimate goal is to find vacuum decay at absolute zero temperature, where the process is driven solely by quantum vacuum fluctuations. An experiment in Cambridge, supported by Newcastle as part of the national QSimFP collaboration, is doing just that.
Stam Nicolis added a reply:
Just what the name says: There are many physical systems, whose potential energy, in the absence of fluctuations, possesses more than one minima. If these minima are not degenerate, it can occur that one is the absolute minimum, however, due to the choice of initial conditions, the system is found in another minimum. In the absence of fluctuations, it will stay in the potential well of that minimum.
In the presence of fluctuations, it can occur that the relative minimum is no longer a minimum: In that case the system won't stay there forever and it is possible to compute the rate at which it will evolve to another state.
While the presence of fluctuations is a necessary condition, it isn't sufficient for transitions to be possible.
Sergey Shevchenko added a reply:
“What is a phenomenon called "false vacuum collapse"?”
- the answer to this question is: the question really is absurdity, since really there cannot be fundamentally any “false vacuum”, i.e. that really is an fundamental absurdity, and so its “collapse” is absurdity as well.
Though yeah, in mainstream physics really rather numerous fantastic/mystic “true/false vacuums” really exist, and corresponding publications, where corresponding fantastic/mystic properties and effects of/in the vacuums are “discovered”, are well popular and numerous.
That exists in the mainstream completely logically inevitably from the fact that in the mainstream all really fundamental phenomena/notions, first of all on this case “Matter”– and so everything in Matter, i.e. “particles”, “fundamental Nature forces” – and so “fields”, etc., including “vacuum”, “Consciousness”, “Space”, “Time”, “Energy”, “Information”, are fundamentally completely transcendent/uncertain/irrational,
- and so in every case when the mainstream addresses to something that is really fundamental, the results completely inevitably are only some the fantasies.
More see recent SS post in https://www.researchgate.net/post/What_is_a_super_vacuum_Is_the_earth_in_a_vacuum_And_what_is_dark_energy , and links in the post; reDzennn comment, 9/8 [because of too active moderator] passages, to a Nature Physics (2024) paper in
https://phys.org/news/2024-01-phenomenon-false-vacuum-decay.html) directly relates to the thread question.
Zoltan Vilagosh added a reply:
Not that complicated really. False vacuum example = because you cannot see over the hill, you think are at the lowest level possible. This makes you think you have no potential energy left. But a surprise awaits if you make it to the top of the hill...you tumble lower onto the vast endless plain on the other side.
__/\O/\
\
\__O
Sergey Shevchenko added a reply:
“…Not that complicated really. False vacuum example = because you cannot see over the hill, you think are at the lowest level possible. This makes you think you have no potential energy left. But a surprise awaits if you make it to the top of the hill...you tumble lower onto the vast endless plain on the other side. …..”
- that above looks as tooo not complicated passage really, though, again, on such level the authors of the paper in a top physical Nature Physics (2024) journal also thought,
- which “discovered” “false vacuum bubbles decays” in some Bose-Einstein Cond sate of Na-23 atoms, more see reDzennn comment, 8 passages, in https://phys.org/news/2024-01-phenomenon-false-vacuum-decay.html, the strangely removed by moderator passage is in the end of whole comments series.
Though yeah, the really full stop “false vacuum” theories are rather popular in mainstream physics, including rather popular is the theory that Matter was created soon 14 billion years ago at some “bubble in spacetime decay”. Thank heavens till now no any even small bubbles didn’t decay near Earth, and nowhere in Space at all, in last 10 billion of years Milky Way existence.
However, again, this full stop – and so quite easily composed - fantasies are so rather popular, and in this case so some people don’t like the comment, correspondingly it is heavily “down voted”.
Juan Weisz added a reply
Perhaps vacuum does not collapse,
but you know the saying, nature abhors vacuum.
Harri Shore added a reply
False vacuum collapse is a theoretical concept in particle physics and cosmology. It suggests that our universe might currently exist in a metastable vacuum state, also known as a false vacuum. If this false vacuum were to collapse to a lower energy state, it could trigger catastrophic consequences, such as the destruction of all matter and the laws of physics as we know them. This hypothetical scenario is based on certain models in quantum field theory and the structure of the universe. However, there is currently no empirical evidence to support the occurrence of false vacuum collapse.