It is physically impossible to fully isolate the pure initial conditions nor the pure final conditions you were dreaming on. No shield exists against the Dirac-de-Broglie ground noise.
"Uncertainty principle" is just the relabelling by a crook, of the properties of the Fourier's transform, already known a century before.
Please do not confuse any more the whole microphysics, including the quantum part of microphysics, with the pecular fairy tales taught by a pecular tribe, alas hegemonic.
For instance under the Lenard threshold, there is little way to bring an incident photon into the quantic realm.
Unless the absorber is held by quantic rules, there is no way to bring into the quantic realm a photon emitted by a synchrotron.
A photon is in the quantic realm only if at least one, either the emitter, either the absorber jumps from a stationary initial state to a stationary final state. If these stationary states are of long duration and very well defined in Broglian frequency, their beat, the frequency of the photon is well defined in frequency, so the photon is long, is far from being assimilable to a "corpuscle".
For instance, when you handle a Mössbauer photon in a bench-size apparatus, a small part of it is in the space between emitter and absorber, a part is already absorbed by the absorbing nucleus, and a part of it is still in the bottom of the hen, in the emitting nucleus. Because a Mössbauer photon is a very long one. And much longer are some photons of a hydrogen maser: in the range of the distance from here to the Moon, or half of it.
It is possible to propose many theories based on noncommuting operators related with the physical observables. When the Schrödinger equation is used, the usual commutator relations appears and consequently their uncertain relations.