The fallacy of the aether was that its only function was to propagate light waves. This question goes much further and probes whether space (the vacuum) is an elastic medium that propagates waves at the speed of light. For example, do gravitational waves propagate in the elastic fabric of space? If space is assumed to be an elastic wave propagation medium, then gravitational wave equations imply this medium has enormous impedance of c3/G = 4 x 1035 kg/s.

This is a discussion question, and I am going to take the position that spacetime is an elastic medium with “spacetime foam” properties first proposed by John Wheeler. He determined that the uncertainty principle and vacuum zero-point energy implied space has Planck length oscillations at Planck frequency. This would make spacetime a physical medium that propagates waves at the speed of light with impedance of c3/G. This impedance is so enormous that a rotating wave with Planck length amplitude and an electron’s Compton radius would have an electron’s energy.

I am taking the position that the quantum vacuum is a sonic medium that propagates waves at the speed of light. This medium gives the vacuum its “intrinsic” properties such as vacuum permittivity εo, vacuum permeability μo, impedance of free space Zo, virtual particle formation, etc. If spacetime is not a physical medium, why does it have finite values for εo, μo and Zo? The following link has more information about my opinion and model. What is your opinion?

https://www.researchgate.net/publication/371724212_A_Single_Field_Model_of_the_Universe

More John A. Macken's questions See All
Similar questions and discussions