Yes, it is possible to draw a bifurcation diagram for the rational system ( \frac{1}{1 - ax - bx^2} ) in MATLAB. Here is a step-by-step guide to help you get started:
Define the System: First, define the rational function and the parameters you want to vary.
Set Up the Range for Parameters: Choose the range for the parameters (a) and (b).
Iterate Over the Parameter Range: For each value of the parameter, solve the system and store the results.
Plot the Results: Use MATLAB’s plotting functions to create the bifurcation diagram.
Here is an example MATLAB code to illustrate this process:
% Define the range for the parameter a a_values = linspace(-2, 2, 1000); % Adjust the range and number of points as needed b = 1; % Set a fixed value for b % Initialize arrays to store results x_values = linspace(-2, 2, 1000); % Adjust the range and number of points as needed y_values = zeros(length(a_values), length(x_values)); % Iterate over the range of a values for i = 1:length(a_values) a = a_values(i); % Define the rational function y = 1 ./ (1 - a * x_values - b * x_values.^2); y_values(i, :) = y; end % Plot the bifurcation diagram figure; imagesc(a_values, x_values, y_values'); colorbar; xlabel('Parameter a'); ylabel('x'); title('Bifurcation Diagram of the System 1/(1 - ax - bx^2)');
This code sets up a range for the parameter (a) and iterates over it, calculating the values of the rational function for each (a). The results are then plotted using imagesc to create a bifurcation diagram.