Our answer is YES. Irrationals, since the ancient Greeks, have had a "murky" reputation. We cannot measure physically any irrational, as one would require infinite precision, and time. One would soon exhaust all the atoms in the universe, and still not be able to count one irrational.
The set of all irrationals does not even have a name, because there seems to be no test that could indicate if a member belongs to the set or not. All we seem to know is it is not a rational number -- but what is it?
The situation is clarified in our book Quickest Calculus, available at lowest price in paper, for class use. See https://www.amazon.com/dp/B0BHMPMMTY/
There, Instead of going into complicated values of elliptic curves, and infinite irrationals, algebra allows us to talk about "x".
No approximating rational numbers need to be used, nor Hurwitz Theorem.
Thus, one can "tame" irrationals by algebra, with 0 (zero) error. For example, we know the value of pi. It is 2×arcsin(1) exactly, and we can calculate it using Hurwitz Theorem, approximately.
GENERALIZATION: Any irrational number is some function f(x), where x belongs to the sets Z, or Q -- well-defined, isolated, and surrounded by a region of "nothingness". The set of all such numbers we call "E", for Exact. It is an infinite set.
What is your qualified opinion?