According to Shannon in classical information theory H(x) > f(H(x)) for an entropy H(x) over some random variable x, with an unknown function f. Is it possible that an observer that doesn’t know the function (that produces statistically random data) can take the output of the function and consider it random (entropy)? Additionally, if one were to use entropy as a measure between two states, what would that ‘measure’ be between the statistically random output and the original pool of random?

More H. S. Jacinto's questions See All
Similar questions and discussions